Part Number Hot Search : 
T10A060E SG723J KSP52 UT54AC D1680 UT54AC 100KL C5200
Product Description
Full Text Search
 

To Download D6RTB-SKG-U3V3W2XS2T-1 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  1 features: > high brightness tri-color surface mount led. > each color can be individually controlled > 120 viewing angle. > small package outline (lxwxh) of 3.2 x 3.0 x 1.7mm. > qualified according to jedec moisture sensitivity level 2. > compatible to ir reflow soldering. > environmental friendly; rohs compliance. > superior corrosion resistant. > compliance to automotive standard; aec-q101. multi domiled synonymous with function and performance, the multi domiled series is perfectly suited for a variety of cross-industrial applications due to its small package outline, durability and superior brightness. data sheet multi domiled d6rtb-skg ? 2005 domiled is a trademark of dominant opto technologies. all rights reserved. product specifcations are subject to change without notice. dominant opto technologies innovating illumination tm 29/09/2017 v2.0 applications: > automotive: interior applications, eg: switches, telematics, climate control system, dashboard, etc. > signs: full color video > consumer & communication: backlighting of lcds > general lighting: architectural lighting, decorative lighting
true green 528nm d6rtb-skg-u3v3+w2x+s2t-1 2 red 625nm part ordering number color, dom (nm) chip #1 chip #2 chip #3 blue 465nm max. (v) typ. (v) vf @ if = 20ma appx. 3.1 electrical characteristics at tj=25?c red true green blue 2.20 3.00 3.00 2.50 3.30 3.30 min. (v) 1.90 2.65 2.65 optical characteristics at tj=25?c luminous intensity @ if = 20ma iv (mcd) appx. 1.1 chip #1 chip #2 chip #3 650.0-1280.0 1400.0-2850.0 224.0-450.0 29/09/2017 v2.0 unit absolute maximum ratings maximum value dc forward current peak pulse current; (tp 10s, duty cycle = 0.005) reverse voltage esd threshold (hbm) led junction temperature operating temperature storage temperature thermal resistance (1 chips on) - real thermal resistance junction / ambient, r th ja real red blue & true green junction / solder point, r th js real red blue & true green (mounting on dominant standard pcb) red; alingap=50; true green, blue; ingan=50 red ; alingap=200 true green, blue; ingan=200 red; alingap=12; true green, blue; ingan= 5 2000 125 -40 +115 -40 +125 360 390 160 170 ma ma v v ?c ?c ?c k/w k/w k/w k/w v r @ i r = 10ua min. (v) 12 5 5 d6rtb-skg dominant opto technologies innovating illumination tm
3 29/09/2017 v2.0 group wavelength grouping wavelength distribution (nm) appx. 2.2 color red true green blue full full a b c full a b c 619 - 629 520 - 535 520 - 525 525 - 530 530 - 535 459 - 471 459 - 463 463 - 467 467 - 471 d6rtb-skg dominant opto technologies innovating illumination tm
4 color red true green blue luminous intensity appx. 1.1 iv (mcd) luminous intensity group at tj=25?c brightness group u3 v3 w2 x1 x2 s2 t1 t2 650.0 ... 900.0 900.0 ... 1280.0 1400.0 ... 1800.0 1800.0 ... 2240.0 2240.0 ... 2850.0 224.0 ... 285.0 285.0 ... 355.0 355.0 ... 450.0 29/09/2017 v2.0 d6rtb-skg dominant opto technologies innovating illumination tm
5 29/09/2017 v2.0 forward voltage v f (v) forward current i f (ma) forward current i f (ma) relative luminous intensity i rel relative luminous intensity vs forward current (red) i v /i v ( 20ma) = f(i f ); t j = 25c forward current i f (ma) temperature t(c) maximum current vs temperature (red) i f =f(t) forward current i f (ma) forward current i f (ma) relative luminous intensity i rel relative luminous intensity vs forward current (blue & true green) i v /i v ( 20ma) = f(i f ); t j = 25c d6rtb-skg dominant opto technologies innovating illumination tm forward voltage v f (v) forward current i f (ma) temperature t(c) maximum current vs temperature (blue & true green) i f =f(t) forward current vs forward voltage (blue & true green) i f = f (v f ); t j = 25c forward current vs forward voltage (red) i f = f (v f ); t j = 25c 0.0 0.5 1.0 1.5 2.0 2.5 0 10 20 30 40 50 0 10 20 30 40 50 1.8 2.0 2.2 2.4 2.6 2.8 forward current i f forward current i f (ma) forward current vs forward voltage i f = f(v f ); t j = 25c (red ) forward voltage v f (v) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 350 400 450 500 550 600 650 700 750 wavelength (nm) forward current i f (ma) maximum current vs temperature i f = f (t) (red) (1 chip on) temperature t(c) 0 10 20 30 40 50 60 0 20 40 60 80 100 120 t a t s t a ? = ? ambient ? temperature t s ? = ? solder ? point ? temperature relative luminous intensity vs forward current i v /i v (20ma) = f(i f ); t j = 25c (red) relative luminous intensity i rel relative luminous intensity i rel relative spectral emission i rel = f( ); t j = 25c; i f = 20ma 0.0 0.5 1.0 1.5 2.0 2.5 0 10 20 30 40 50 forward current i f (ma) relative luminous intensity vs forward current i v /i v (20ma) = f(i f ); t j = 25c (blue & true green) relative luminous intensity i rel 0 10 20 30 40 50 2.4 2.6 2.8 3.0 3.2 3.4 3.6 forward current i f forward current vs forward voltage i f = f(v f ); t j = 25c (blue & true green) forward voltage v f (v) blue true ? green red 0.0 0.5 1.0 1.5 2.0 2.5 0 10 20 30 40 50 0 10 20 30 40 50 1.8 2.0 2.2 2.4 2.6 2.8 forward current i f forward current i f (ma) forward current vs forward voltage i f = f(v f ); t j = 25c (red ) forward voltage v f (v) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 350 400 450 500 550 600 650 700 750 wavelength (nm) forward current i f (ma) maximum current vs temperature i f = f (t) (red) (1 chip on) temperature t(c) 0 10 20 30 40 50 60 0 20 40 60 80 100 120 t a t s t a ? = ? ambient ? temperature t s ? = ? solder ? point ? temperature relative luminous intensity vs forward current i v /i v (20ma) = f(i f ); t j = 25c (red) relative luminous intensity i rel relative luminous intensity i rel relative spectral emission i rel = f( ); t j = 25c; i f = 20ma 0.0 0.5 1.0 1.5 2.0 2.5 0 10 20 30 40 50 forward current i f (ma) relative luminous intensity vs forward current i v /i v (20ma) = f(i f ); t j = 25c (blue & true green) relative luminous intensity i rel 0 10 20 30 40 50 2.4 2.6 2.8 3.0 3.2 3.4 3.6 forward current i f forward current vs forward voltage i f = f(v f ); t j = 25c (blue & true green) forward voltage v f (v) blue true ? green red 0.0 0.5 1.0 1.5 2.0 2.5 0 10 20 30 40 50 0 10 20 30 40 50 1.8 2.0 2.2 2.4 2.6 2.8 forward current i f forward current i f (ma) forward current vs forward voltage i f = f(v f ); t j = 25c (red ) forward voltage v f (v) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 350 400 450 500 550 600 650 700 750 wavelength (nm) forward current i f (ma) maximum current vs temperature i f = f (t) (red) (1 chip on) temperature t(c) 0 10 20 30 40 50 60 0 20 40 60 80 100 120 t a t s t a ? = ? ambient ? temperature t s ? = ? solder ? point ? temperature relative luminous intensity vs forward current i v /i v (20ma) = f(i f ); t j = 25c (red) relative luminous intensity i rel relative luminous intensity i rel relative spectral emission i rel = f( ); t j = 25c; i f = 20ma 0.0 0.5 1.0 1.5 2.0 2.5 0 10 20 30 40 50 forward current i f (ma) relative luminous intensity vs forward current i v /i v (20ma) = f(i f ); t j = 25c (blue & true green) relative luminous intensity i rel 0 10 20 30 40 50 2.4 2.6 2.8 3.0 3.2 3.4 3.6 forward current i f forward current vs forward voltage i f = f(v f ); t j = 25c (blue & true green) forward voltage v f (v) blue true ? green red 0.0 0.5 1.0 1.5 2.0 2.5 0 10 20 30 40 50 0 10 20 30 40 50 1.8 2.0 2.2 2.4 2.6 2.8 forward current i f forward current i f (ma) forward current vs forward voltage i f = f(v f ); t j = 25c (red ) forward voltage v f (v) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 350 400 450 500 550 600 650 700 750 wavelength (nm) forward current i f (ma) maximum current vs temperature i f = f (t) (red) (1 chip on) temperature t(c) 0 10 20 30 40 50 60 0 20 40 60 80 100 120 t a t s t a ? = ? ambient ? temperature t s ? = ? solder ? point ? temperature relative luminous intensity vs forward current i v /i v (20ma) = f(i f ); t j = 25c (red) relative luminous intensity i rel relative luminous intensity i rel relative spectral emission i rel = f( ); t j = 25c; i f = 20ma 0.0 0.5 1.0 1.5 2.0 2.5 0 10 20 30 40 50 forward current i f (ma) relative luminous intensity vs forward current i v /i v (20ma) = f(i f ); t j = 25c (blue & true green) relative luminous intensity i rel 0 10 20 30 40 50 2.4 2.6 2.8 3.0 3.2 3.4 3.6 forward current i f forward current vs forward voltage i f = f(v f ); t j = 25c (blue & true green) forward voltage v f (v) blue true ? green red 0.0 0.5 1.0 1.5 2.0 2.5 0 10 20 30 40 50 0 10 20 30 40 50 1.8 2.0 2.2 2.4 2.6 2.8 forward current i f forward current i f (ma) forward current vs forward voltage i f = f(v f ); t j = 25c (red ) forward voltage v f (v) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 350 400 450 500 550 600 650 700 750 wavelength (nm) forward current i f (ma) maximum current vs temperature i f = f (t) (red) (1 chip on) temperature t(c) 0 10 20 30 40 50 60 0 20 40 60 80 100 120 t a t s t a ? = ? ambient ? temperature t s ? = ? solder ? point ? temperature relative luminous intensity vs forward current i v /i v (20ma) = f(i f ); t j = 25c (red) relative luminous intensity i rel relative luminous intensity i rel relative spectral emission i rel = f( ); t j = 25c; i f = 20ma 0.0 0.5 1.0 1.5 2.0 2.5 0 10 20 30 40 50 forward current i f (ma) relative luminous intensity vs forward current i v /i v (20ma) = f(i f ); t j = 25c (blue & true green) relative luminous intensity i rel 0 10 20 30 40 50 2.4 2.6 2.8 3.0 3.2 3.4 3.6 forward current i f forward current vs forward voltage i f = f(v f ); t j = 25c (blue & true green) forward voltage v f (v) blue true ? green red allowable forward current i f ( m a ) allowable forward current vs duty ratio ( t j = 25c; t p 10 s ) duty ratio, % 10 100 1000 0.1 1 10 100 red, ? true ? green ? & ? blue ? cx ? cy forward current i f (ma) maximum current vs temperature i f = f (t) (true green & blue) (1 chip on) temperature t(c) 0 10 20 30 40 50 60 0 20 40 60 80 100 120 t a true ? green ? & ? blue ? t s t a ? = ? ambient ? temperature t s ? = ? solder ? point ? temperature
6 29/09/2017 v2.0 allowable forward current i f ( ma ) radiation pattern forward current i f (ma) relative wavelength rel (nm) junction temperature t j (c) relative forward voltage ?v f (v) junction temperature t j (c) relative luminous intensity i rel d6rtb-skg dominant opto technologies innovating illumination tm relative luminous intensity i rel wavelength (nm) 0. 2 70 90 80 0 60 50 40 30 20 0. 6 0. 4 1. 0 0. 8 10 0 duty ratio, % relative spectral emission i rel = f(); t j = 25c; i f = 20 ma allowable forward current vs duty ratio ( t j = 25c; t p 10s ) relative luminous intensity vs junction temperature i v /i v ( 25c) = f(t j ); i f = 20ma relative forward voltage vs junction temperature ?v f = v f - v f ( 25c) = f(t j ); i f =20 ma 0.0 0.5 1.0 1.5 2.0 2.5 0 10 20 30 40 50 0 10 20 30 40 50 1.8 2.0 2.2 2.4 2.6 2.8 forward current i f forward current i f (ma) forward current vs forward voltage i f = f(v f ); t j = 25c (red ) forward voltage v f (v) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 350 400 450 500 550 600 650 700 750 wavelength (nm) forward current i f (ma) maximum current vs temperature i f = f (t) (red) (1 chip on) temperature t(c) 0 10 20 30 40 50 60 0 20 40 60 80 100 120 t a t s t a ? = ? ambient ? temperature t s ? = ? solder ? point ? temperature relative luminous intensity vs forward current i v /i v (20ma) = f(i f ); t j = 25c (red) relative luminous intensity i rel relative luminous intensity i rel relative spectral emission i rel = f( ); t j = 25c; i f = 20ma 0.0 0.5 1.0 1.5 2.0 2.5 0 10 20 30 40 50 forward current i f (ma) relative luminous intensity vs forward current i v /i v (20ma) = f(i f ); t j = 25c (blue & true green) relative luminous intensity i rel 0 10 20 30 40 50 2.4 2.6 2.8 3.0 3.2 3.4 3.6 forward current i f forward current vs forward voltage i f = f(v f ); t j = 25c (blue & true green) forward voltage v f (v) blue true ? green red allowable forward current i f ( m a ) allowable forward current vs duty ratio ( t j = 25c; t p 10 s ) duty ratio, % 10 100 1000 0.1 1 10 100 red, ? true ? green ? & ? blue ? cx ? cy forward current i f (ma) maximum current vs temperature i f = f (t) (true green & blue) (1 chip on) temperature t(c) 0 10 20 30 40 50 60 0 20 40 60 80 100 120 t a true ? green ? & ? blue ? t s t a ? = ? ambient ? temperature t s ? = ? solder ? point ? temperature -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 -50 -25 0 25 50 75 100 125 true ? green blue red 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 -50 -25 0 25 50 75 100 125 red true ? green blue relative forward voltage ? v f (v) relative forward voltage vs junction temperature ? v f = v f -v f (25c) = f(t j ); i f = 20ma junction temperature t j (c) junction temperature t j (c) - - - - relative wavelength ? dom (nm) relative luminous intensity vs junction temperature i v /i v (25c) = f(t j ); i v = 20ma relative luminous intensity i rel -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 -50 -25 0 25 50 75 100 125 blue 20 red ? true ? green blue 5 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 -50 -25 0 25 50 75 100 125 true ? green blue ? 20 red ? blue ? 5 relative forward voltage ? v f (v) relative forward voltage vs junction temperature ? v f = v f -v f (25c) = f(t j ); i f = 20ma junction temperature t j (c) junction temperature t j (c) - - - 4 - 2 2 4 relative wavelength ? dom (nm) relative luminous intensity vs junction temperature i v /i v (25c) = f(t j ); i v = 20ma relative luminous intensity i rel -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 -50 -25 0 25 50 75 100 125 true ? green blue red 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 -50 -25 0 25 50 75 100 125 red true ? green blue relative forward voltage ? v f (v) relative forward voltage vs junction temperature ? v f = v f -v f (25c) = f(t j ); i f = 20ma junction temperature t j (c) junction temperature t j (c) - - - - relative wavelength ? dom (nm) relative luminous intensity vs junction temperature i v /i v (25c) = f(t j ); i v = 20ma relative luminous intensity i rel -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 -50 -25 0 25 50 75 100 125 blue 20 red ? true ? green blue 5 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 -50 -25 0 25 50 75 100 125 true ? green blue ? 20 red ? blue ? 5 relative forward voltage ? v f (v) relative forward voltage vs junction temperature ? v f = v f -v f (25c) = f(t j ); i f = 20ma junction temperature t j (c) junction temperature t j (c) - - - 4 - 2 2 4 relative wavelength ? dom (nm) relative luminous intensity vs junction temperature i v /i v (25c) = f(t j ); i v = 20ma relative luminous intensity i rel -10.00 -8.00 -6.00 -4.00 -2.00 0.00 2.00 4.00 6.00 8.00 10.00 0 10 20 30 40 50 true green blue relative wavelength rel (nm) relative wavelength shift vs forward current dom = f(i f ); t j = 25c forward current i f (ma) relative wavelength shift vs forward current dom = f(i f ); t j = 25c
junction temperature t j (c) relative wavelength ?dom(nm) 7 29/09/2017 v2.0 d6rtb-skg dominant opto technologies innovating illumination tm relative wavelength vs junction temperature ?dom = dom - dom ( 25c) = f(t j ); if =20 ma -8.0 -6.0 -4.0 -2.0 0.0 2.0 4.0 6.0 8.0 -50 -25 0 25 50 75 100 125 blue red true ? green relative wavelength ? dom (nm) relative wavelength vs junction temperature ? dom = dom - dom (25c) = f(t j ); i f = 20ma junction temperature t j (c) -8.0 -6.0 -4.0 -2.0 0.0 2.0 4.0 6.0 8.0 -50 -25 0 25 50 75 100 125 blue ? 5 true ? green red ? blue ? 20 relative wavelength ? dom (nm) relative wavelength vs junction temperature ? dom = dom - dom (25c) = f(t j ); i f = 20ma junction temperature t j (c)
8 multi domiled : d6rtb-skg package outlines note: package is pb-free. materials lead frame housing encapsulant lead-fnishing materials cu alloy with nipdau plating high temperature resistant plastic, ppa silicone nipdau plating 29/09/2017 v2.0 note : primary thermal path is through cathode lead of led package for red, anode lead for blue and true green. d6rtb-skg dominant opto technologies innovating illumination tm
9 recommended solder pad 29/09/2017 v2.0 d6rtb-skg dominant opto technologies innovating illumination tm
10 taping and orientation ? reels come in quantity of 1000 units. ? reel diameter is 180 mm. 29/09/2017 v2.0 d6rtb-skg dominant opto technologies innovating illumination tm 10 taping and orientation ? reels come in quantity of 1000 units. ? reel diameter is 180 mm. 22/05/2017 v1.0 d6rtb-skg dominant opto technologies innovating illumination tm
11 packaging specifcation 29/09/2017 v2.0 d6rtb-skg dominant opto technologies innovating illumination tm 28/10/2010 v8.0 10 packaging specifcation allngap : ddx-xrs dominant opto technologies innovating illumination tm
12 29/09/2017 v2.0 packaging specifcation average 1pc multi domiled 1 completed bag (1000pcs) 0.034 190 10 weight (gram) cardboard box dimensions (mm) empty box weight (kg) super small small medium large for multi domiled reel / box cardboard box size weight (gram) 0.034 240 10 dominant tm moisture sensitivity level moisture absorbent material + moisture indicator the reel, moisture absorbent material and moisture indicator are sealed inside the moisture proof foil bag reel barcode label label (l) lot no : lotno (p) part no : partno (c) cust no : partno (g) grouping : group (q) quantity : quantity (d) d/c : date code (s) s/n : serial no dominant opto technologies ml temp 2 260?c rohs compliant made in malaysia 325 x 225 x 190 325 x 225 x 280 570 x 440 x 230 570 x 440 x 460 0.38 0.54 1.46 1.92 7 reels max 11 reels max 48 reels max 96 reels max d6rtb-skg dominant opto technologies innovating illumination tm
13 time (sec) 0 50 100 150 200 300 250 225 200 175 150 125 100 75 50 25 275 temperature (?c) classifcation refow profle (jedec j-std-020c) ramp-up 3?c/sec max. 255-260?c 10-30s 60-150s ramp- down 6?c/sec max. preheat 60-180s 480s max 217?c recommended pb-free soldering profle 29/09/2017 v2.0 d6rtb-skg dominant opto technologies innovating illumination tm
14 29/09/2017 v2.0 appendix 1) brightness: 1.1 luminous intensity is measured with an internal reproducibility of 8 % and an expanded uncertainty of 11 % (according to gum with a coverage factor of k=3). 1.2 luminous fux is measured with an internal reproducibility of 8 % and an expanded uncertainty of 11 % (according to gum with a coverage factor of k=3). 2) color: 2.1 chromaticity coordinate groups are measured with an internal reproducibility of 0.005 and an expanded uncertainty of 0.01 (accordingly to gum with a coverage factor of k=3). 2.2 dominant wavelength is measured with an internal reproducibility of 0.5nm and an expanded uncertainty of 1nm (accordingly to gum with a coverage factor of k=3). 3) voltage: 3.1 forward voltage, vf is measured with an internal reproducibility of 0.05v and an expanded uncertainty of 0.1v (accordingly to gum with a coverage factor of k=3). d6rtb-skg dominant opto technologies innovating illumination tm
revision history note all the information contained in this document is considered to be reliable at the time of publishing. however, dominant opto technologies does not assume any liability arising out of the application or use of any product described herein. dominant opto technologies reserves the right to make changes to any products in order to improve reliability, function or design. dominant opto technologies products are not authorized for use as critical components in life support devices or systems without the express written approval from the managing director of dominant opto technologies . page - 5, 6, 7 subjects initial release update graph date of modifcation 22 may 2017 29 sep 2017 15 29/09/2017 v2.0 d6rtb-skg dominant opto technologies innovating illumination tm
about us dominant opto technologies is a dynamic company that is amongst the worlds leading automotive led manu - facturers. with an extensive industry experience and relentless pursuit of innovation, dominants state-of-art manufacturing and development capabilities have become a trusted and reliable brand across the globe. more in - formation about dominant opto technologies, a iso/ts 16949 and iso 14001 certifed company, can be found under http://www.dominant-semi.com. please contact us for more information: dominant opto technologies sdn. bhd. lot 6, batu berendam, ftz phase iii, 75350 melaka, malaysia tel: (606) 283 3566 fax: (606) 283 0566 e-mail: sales@dominant-semi.com d6rtb-skg dominant opto technologies innovating illumination tm


▲Up To Search▲   

 
Price & Availability of D6RTB-SKG-U3V3W2XS2T-1

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X