Part Number Hot Search : 
90814 W79E802 738AEW KK91214B VT6X12 H7N06 2SK22 KSB772O
Product Description
Full Text Search
 

To Download MD7IC2050NR110 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  md7ic2050nr1 md7ic2050gnr1 md7ic2050nbr1 1 rf device data freescale semiconductor rf ldmos wideband integrated power amplifiers the md7ic2050n wideband integrated circuit is designed with on- chip matching that makes it usable from 1750- 2050 mhz. this multi- stage structure is rated for 26 to 32 volt operation and covers all typical cellular base station modulation formats. ? typical doherty single-carrier w-cdma performance: v dd = 28 volts, i dq1a = i dq1b = 30 ma, i dq2a = 230 ma, v gs2b = 1.4 vdc, p out = 10 watts avg., iq magnitude clipping, channel bandwidth = 3.84 mhz, input signal par = 9.9 db @ 0.01% probability on ccdf. frequency g ps (db) pae (%) output par (db) acpr (dbc) 2025 mhz 30.5 34.7 8.7 -37.4 ? capable of handling 5:1 vswr, @ 32 vdc, 2017.5 mhz, 79 watts cw output power (3 db input overdrive from rated p out ) ? stable into a 5:1 vswr. all spurs below -60 dbc @ 20 watts to 80 watts cw p out ? typical p out @ 3 db compression point  74 watts cw 1880 mhz ? typical doherty single-carrier w-cdma performance: v dd = 28 volts, i dq1a = i dq1b = 30 ma, i dq2a = 230 ma, v gs2b = 1.4 vdc, p out = 10 watts avg., iq magnitude clipping, channel bandwidth = 3.84 mhz, input signal par = 9.9 db @ 0.01% probability on ccdf. frequency g ps (db) pae (%) output par (db) acpr (dbc) 1880 mhz 30.3 35.2 8.6 -34.9 1900 mhz 30.2 34.9 8.6 -36.3 1920 mhz 30.1 34.8 8.7 -36.9 features ? 100% par tested for guaranteed output power capability ? production tested in a symmetrical doherty configuration ? characterized with series equivalent large-signal impedance parameters and common source s-parameters ? on-chip matching (50 ohm input, dc blocked) ? integrated quiescent current temperature compensation with enable/disable function (1) ? integrated esd protection ? 225 c capable plastic package ? rohs compliant ? in tape and reel. r1 suffix = 500 units per 44 mm, 13 inch reel 1. refer to an1977, quiescent current thermal tracking circuit in the rf integrated circuit family and to an1987, quiescent current control for the rf integrated circuit device family . go to http://www .freescale.com/rf. select documentation/application notes - an1977 or an1987. 1880-2100 mhz, 10 w avg., 28 v single w-cdma rf ldmos wideband integrated power amplifiers md7ic2050nr1 md7ic2050gnr1 md7ic2050nbr1 case 1618-02 to-270 wb-14 plastic md7ic2050nr1 case 1621-02 to-270 wb-14 gull plastic md7ic2050gnr1 case 1617-02 to-272 wb-14 plastic md7ic2050nbr1 document number: md7ic2050n rev. 1, 5/2010 freescale semiconductor technical data ? freescale semiconductor , inc., 2009-2010. all rights reserved.
2 rf device data freescale semiconductor md7ic2050nr1 md7ic2050gnr1 md7ic2050nbr1 figure 1. functional block diagram figure 2. pin connections note: exposed backside of the package is the source terminal for the transistors. quiescent current temperature compensation (1) v ds1a rf ina v gs1a rf out1 /v ds2a v gs2a quiescent current temperature compensation (1) v ds1b rf inb v gs1b rf out2 /v ds2b v gs2b v ds1a rf ina nc rf inb rf out1 /v ds2a 1 2 3 4 7 8 14 v gs1b 9 10 11 v gs2a v gs1a nc nc v gs2b nc v ds1b rf out2 /v ds2b 13 6 12 (top view) 5 carrier (2) peaking (2) 1. refer to an1977, quiescent current thermal tracking circuit in the rf integrated circuit family and to an1987, quiescent current control for the rf integrated circuit device family . go to http://www .freescale.com/rf. select documentation/application notes - an1977 or an1987. 2. peaking and carrier orientation is determined by the test fixture design. table 1. maximum ratings rating symbol value unit drain-source voltage v dss -0.5, +65 vdc gate-source voltage v gs -0.5, +10 vdc operating voltage v dd 32, +0 vdc storage temperature range t stg -65 to +150 c case operating temperature t c 150 c operating junction temperature (1,2) t j 225 c input power p in 28 dbm table 2. thermal characteristics characteristic symbol value (2,3) unit final doherty application thermal resistance, junction to case case temperature 81 c, p out = 50 w cw stage 1a, 28 vdc, i dq1a = 30 ma stage 1b, 28 vdc, i dq1b = 30 ma stage 2a, 28 vdc, i dq2a = 230 ma stage 2b, 28 vdc, v gs2b = 1.4 vdc case temperature 73 c, p out = 10 w cw stage 1a, 28 vdc, i dq1a = 30 ma stage 1b, 28 vdc, i dq1b = 30 ma stage 2a, 28 vdc, i dq2a = 230 ma stage 2b, 28 vdc, v gs2b = 1.4 vdc r jc 8.2 8.2 1.8 1.8 8.3 8.3 1.9 1.9 c/w 1. continuous use at maximum temperature will affect mttf. 2. mttf calculator available at http://www.freescale.com/rf . select software & tools/development tools/calculators to access mttf calculators by product. 3. refer to an1955, thermal measurement methodology of rf power amplifiers. go to http://www.freescale.com/rf . select documentation/application notes - an1955.
md7ic2050nr1 md7ic2050gnr1 md7ic2050nbr1 3 rf device data freescale semiconductor table 3. esd protection characteristics test methodology class human body model (per jesd22-a114) 0 (minimum) machine model (per eia/jesd22-a115) a (minimum) charge device model (per jesd22-c101) ii (minimum) table 4. moisture sensitivity level test methodology rating package peak temperature unit per jesd22-a113, ipc/jedec j-std-020 3 260 c table 5. electrical characteristics (t a = 25 c unless otherwise noted) characteristic symbol min typ max unit stage 1 - off characteristics (1) zero gate voltage drain leakage current (v ds = 65 vdc, v gs = 0 vdc) i dss 10 adc zero gate voltage drain leakage current (v ds = 28 vdc, v gs = 0 vdc) i dss 1 adc gate-source leakage current (v gs = 1.5 vdc, v ds = 0 vdc) i gss 1 adc stage 1 - on characteristics (1) gate threshold voltage (v ds = 10 vdc, i d = 23 adc) v gs(th) 1.2 1.9 2.7 vdc gate quiescent voltage (v ds = 28 vdc, i dq1a = i dq1b = 30 madc) v gs(q) 3 vdc fixture gate quiescent voltage (v dd = 28 vdc, i dq1a = i dq1b = 30 madc, measured in functional test) v gg(q) 4.1 5.5 7.1 vdc stage 2 - off characteristics (1) zero gate voltage drain leakage current (v ds = 65 vdc, v gs = 0 vdc) i dss 10 adc zero gate voltage drain leakage current (v ds = 28 vdc, v gs = 0 vdc) i dss 1 adc gate-source leakage current (v gs = 1.5 vdc, v ds = 0 vdc) i gss 1 adc stage 2 - on characteristics (1) gate threshold voltage (v ds = 10 vdc, i d = 150 adc) v gs(th) 1.2 2 2.7 vdc gate quiescent voltage (v ds = 28 vdc, i dq2a = 230 madc) v gs(q) 3 vdc fixture gate quiescent voltage (v dd = 28 vdc, i dq2a = 230 madc, measured in functional test) v gg(q) 4.1 5.5 7.1 vdc drain-source on-voltage (v gs = 10 vdc, i d = 1 adc) v ds(on) 0.1 0.3 1.2 vdc functional tests (2,3,4) (in freescale doherty test fixture, 50 ohm system) v dd = 28 vdc, i dq1a = i dq1b = 30 ma, i dq2a = 230 ma, v gs2b = 1.4 vdc, p out = 10 w avg., f = 2025 mhz, single-carrier w-cdma, iq magnitude clipping, input signal par = 9.9 db @ 0.01% probability on ccdf. acpr measured in 3.84 mhz channel bandwidth @ 5 mhz offset. power gain g ps 28.5 30.5 33.0 db power added efficiency pae 32.0 34.7 % output peak-to-average ratio @ 0.01% probability on ccdf par 8.0 8.7 db adjacent channel power ratio acpr -37.4 -34.0 dbc 1. each side of device measured separately. 2. part internally matched both on input and output. 3. measurement made with device in a symmetrical doherty configuration. 4. measurement made with device in straight lead configuration before any lead forming operation is applied. (continued)
4 rf device data freescale semiconductor md7ic2050nr1 md7ic2050gnr1 md7ic2050nbr1 table 5. electrical characteristics (t a = 25 c unless otherwise noted) (continued) characteristic symbol min typ max unit typical performances (1) (in freescale doherty test fixture, 50 ohm system) v dd = 28 vdc, i dq1a = i dq1b = 30 ma, i dq2a = 230 ma, v gs2b = 1.4 vdc, 2010-2025 mhz bandwidth p out @ 1 db compression point, cw p1db 60 w p out @ 3 db compression point, cw p3db 74 w imd symmetry @ 30 w pep, p out where imd third order intermodulation  30 dbc (delta imd third order intermodulation between upper and lower sidebands > 2 db) imd sym 55 mhz vbw resonance point (imd third order intermodulation inflection point) vbw res 70 mhz quiescent current accuracy over temperature with 4.7 k gate feed resistors (-30 to 85 c) (2) i qt 2.64 % gain flatness in 15 mhz bandwidth @ p out = 10 w avg. g f 0.1 db gain variation over temperature (-30 c to +85 c) g 0.033 db/ c output power variation over temperature (-30 c to +85 c) p1db 0.008 dbm/ c typical w-cdma broadband performance ? 1880 mhz (in freescale test fixture, 50 ohm system) v dd = 28 vdc, i dq1a = i dq1b = 30 ma, i dq2a = 230 ma, v gs2b = 1.4 vdc, p out = 10 w avg., single-carrier w-cdma, iq magnitude clipping, input signal par = 9.9 db @ 0.01% probability on ccdf. acpr measured in 3.84 mhz channel bandwidth @ 5 mhz offset. frequency g ps (db) pae (%) output par (db) acpr (dbc) irl (db) 1880 mhz 30.3 35.2 8.6 -34.9 -21 1900 mhz 30.2 34.9 8.6 -36.3 -21 1920 mhz 30.1 34.8 8.7 -36.9 -22 1. measurement made with device in a symmetrical doherty configuration. 2. refer to an1977, quiescent current thermal tracking circuit in the rf integrated circuit family and to an1987, quiescent current control for the rf integrated circuit device family . go to http://www.freescale.com/rf.select documentation/application notes - an1977 or an1987.
md7ic2050nr1 md7ic2050gnr1 md7ic2050nbr1 5 rf device data freescale semiconductor figure 3. md7ic2050nr1(gnr1)(nbr1) test circuit component layout md7ic2050n rev. 1 cut out area v gs1a c1 v gs2a v gs2a v ds1a c7 c18 c17 c11 r1 r2 r5 z1 c19 c20 c12 r3 r4 v gs1b v gs2b v ds1b c2 c8 v ds2b c10 c16 c5 c6 c21 c14 c13 c9 c15 c3 c4 v ds2a c p table 6. md7ic2050nr1(gnr1)(nbr1) test circuit com ponent designations and values part description part number manufacturer c1, c2, c3, c4, c5, c6 10 f, 50 v chip capacitors grm55dr61h106ka88l murata c7, c8 4.7 pf chip capacitors atc600f4r7bt250xt atc c9, c10 5.6 pf chip capacitors atc600f5r6bt250xt atc c11, c12, c13, c14 39 pf chip capacitors atc600f390jt250xt atc c15, c16, c17, c18, c19, c20 4.7 f, 50 v chip capacitors grm31cr71h475ka12l murata c21 1.0 pf chip capacitor atc600f1r0bt250xt atc r1, r2, r3, r4 4.7 k , 1/4 w chip resistors crcw12064701kea vishay r5 50 , 1/4 w thick film chip resistor rk73b2bttd510j koa speer z1 1900 mhz band 90 , 3 db hybrid coupler gsc351-hyb1900 soshin pcb 0.020 , r = 3.5 rf-35 taconic
6 rf device data freescale semiconductor md7ic2050nr1 md7ic2050gnr1 md7ic2050nbr1 4  2  2  4  2  2  single-ended quadrature combined doherty push-pull 4  4  4  4  figure 4. possible circuit topologies
md7ic2050nr1 md7ic2050gnr1 md7ic2050nbr1 7 rf device data freescale semiconductor typical characteristics irl, input return loss (db) 1880 irl g ps acpr f, frequency (mhz) figure 5. output peak-to-average ratio compression (parc) broadband performance @ p out = 10 watts avg. -22 -18 -19 -20 -21 30.8 30.7 -39 35 34 33 32 -29 -31 -33 -35 pae, power added efficiency (%) g ps , power gain (db) 30.5 30.3 30.1 29.9 1900 1920 1940 1960 1980 2000 2020 2040 31 -37 -23 parc (db) -2 -0.4 -0.8 -1.2 -1.6 -2.4 acpr (dbc) figure 6. intermodulation distortion products versus two-t one spacing two-t one spacing (mhz) 10 -50 -1 0 -2 0 -3 0 1 100 imd, intermodulation distortion (dbc) -4 0 im3-u im3-l im5-u im5-l im7-l im7-u v dd = 28 vdc, p out = 30 w (pep), i dq1a = i dq1b = 30 ma i dq2a = 230 ma, v gs2b = 1.4 vdc, two-t one measurements (f1 + f2)/2 = center frequency of 2017.5 mhz figure 7. output peak-to-average ratio compression (parc) versus output power 1 p out , output power (watts) -1 -3 -5 6 0 -2 -4 output compression at 0.01% probability on ccdf (db) 3 912 18 48 43 38 33 28 23 pae, power added efficiency (%) -1 db = 10.41 w -2 db = 13.56 w -3 db = 17.24 w 27 acpr acpr (dbc) -42 -30 -32 -34 -38 -36 -40 31 g ps , power gain (db) 30.5 30 29.5 29 28.5 28 g ps 30.6 30.4 30.2 30 29.8 input signal par = 9.9 db @ 0.01% probability on ccdf single-carrier w-cdma, 3.84 mhz channel bandwidth input signal par = 9.9 db @ 0.01% probability on ccdf pae parc v dd = 28 vdc, p out = 10 w (avg.) i dq1a = i dq1b = 30 ma, i dq2a = 230 ma v gs2b = 1.4 vdc, single- carrier w-cdma 3.84 mhz channel bandwidth 15 18 21 24 pae parc v dd = 28 vdc i dq1a = i dq1b = 30 ma i dq2a = 230 ma v gs2b = 1.4 vdc f = 2017.5 mhz
8 rf device data freescale semiconductor md7ic2050nr1 md7ic2050gnr1 md7ic2050nbr1 typical characteristics 1 acpr p out , output power (watts) avg. figure 8. single-carrier w-cdma power gain, power added efficiency and acpr versus output power -25 -30 26 31 0 100 80 60 40 20 pae, power added efficiency (%) g ps , power gain (db) 30.5 30 10 100 acpr (dbc) 28 27 26.5 -20 -35 -40 -45 figure 9. broadband frequency response 5 35 1450 f, frequency (mhz) 30 25 20 1650 gain (db) gain 1850 2050 2250 2450 irl -49 -7 -14 -21 -28 -35 irl (db) 15 -42 f = 2010 mhz 2010 mhz 2025 mhz 2017.5 mhz 29.5 29 28.5 27.5 90 70 50 30 10 -22.5 -27.5 -32.5 -37.5 -42.5 10 g ps v dd = 28 vdc, i dq1a = i dq1b = 30 ma i dq2a = 230 ma, v gs2b = 1.4 vdc, single-carrier w-cdma, 3.84 mhz channel bandwidth input signal par = 9.9 db @ 0.01% probability on ccdf pae 2025 mhz 2017.5 mhz 2010 mhz 2017.5 mhz 2025 mhz v dd = 28 vdc p in = 0 dbm i dq1a = i dq1b = 30 ma i dq2a = 230 ma v gs2b = 1.4 vdc w-cdma test signal 10 0.0001 100 0 peak-t o-a verage (db) figure 10. ccdf w-cdma iq magnitude clipping, single-carrier test signal 10 1 0.1 0.01 0.001 2468 probability (%) w-cdma. acpr measured in 3.84 mhz channel bandwidth @ 5 mhz offset. input signal par = 9.9 db @ 0.01% probability on ccdf input signal 12 -60 -100 10 (db) -20 -30 -40 -50 -70 -80 -90 3.84 mhz channel bw 7.2 1.8 5.4 3.6 0 -1.8 -3.6 -5.4 -9 9 f, frequency (mhz) figure 11. single-carrier w-cdma spectrum -7.2 -acpr in 3.84 mhz integrated bw +acpr in 3.84 mhz integrated bw -10 0
md7ic2050nr1 md7ic2050gnr1 md7ic2050nbr1 9 rf device data freescale semiconductor v dd = 28 vdc, i dq1a = i dqb = 30 ma, i dq2a = 230 ma, v gs2b = 1.4 vdc, p out = 10 w avg. f mhz z in  z load  1995 60.12 - j33.28 11.79 - j6.72 2000 59.30 - j32.57 11.78 - j6.78 2005 58.41 - j32.06 11.78 - j6.85 2010 57.41 - j31.31 11.78 - j6.92 2015 56.31 - j30.27 11.79 - j7.00 2020 55.94 - j29.62 11.81 - j7.08 2025 55.28 - j28.90 11.81 - j7.16 2030 54.75 - j28.12 11.84 - j7.24 2035 54.39 - j27.55 11.80 - j7.33 note: measured with peaking side open. z in = device input impedance as measured from gate to ground. z load = test circuit impedance as measured from drain to ground. figure 12. series equivalent input and load impedance ? carrier side z in z load device under test output matching network v dd = 28 vdc, i dq1a = i dqb = 30 ma, i dq2a = 230 ma, v gs2b = 1.4 vdc, p out = 10 w avg. f mhz z in  z load  1995 60.12 - j33.28 1.86 - j11.38 2000 59.30 - j32.57 1.80 - j11.24 2005 58.41 - j32.06 1.71 - j11.12 2010 57.41 - j31.31 1.64 - j11.00 2015 56.31 - j30.27 1.58 - j10.91 2020 55.94 - j29.62 1.51 - j10.78 2025 55.28 - j28.90 1.45 - j10.66 2030 54.75 - j28.12 1.38 - j10.56 2035 54.39 - j27.55 1.33 - j10.40 note: measured with carrier side open. z in = device input impedance as measured from gate to ground. z load = test circuit impedance as measured from drain to ground. figure 13. series equivalent input and load impedance ? peaking side z in z load device under test output matching network
10 rf device data freescale semiconductor md7ic2050nr1 md7ic2050gnr1 md7ic2050nbr1 alternative peak tune load pull characteristics actual ideal f = 2010 mhz f = 2025 mhz f = 2010 mhz f = 2025 mhz f = 2010 mhz f = 2025 mhz 16 p in , input power (dbm) v dd = 28 vdc, i dq1a = 30 ma, i dq2a = 230 ma 42 38 2018 44 40 30 p out , output power (dbm) load pull test fixture tuned for peak p1db output power @ 28 v 46 48 50 52 141210 08 26 4 36 34 32 f (mhz) p1db p3db watts dbm watts dbm 2010 40 46 49 46.9 2025 38.9 45.9 47.9 46.8 test impedances per compression level f (mhz) z source z load 2010 p1db 73.6 + j31.1 6.8 - j13.7 2025 p1db 68.9 + j26.7 8.3 - j14.3 figure 14. cw output power versus input power @ 28 v note: measurement made on the class ab, carrier side of the device.
md7ic2050nr1 md7ic2050gnr1 md7ic2050nbr1 11 rf device data freescale semiconductor figure 15. md7ic2050nr1(gnr1)(nbr1) test circuit component layout ? 1880 mhz md7ic2050n rev. 1 cut out area v ds2b v gs1a v gs2a v ds1a c7 c18 c17 c11 r1 r2 r5 z1 c19 c20 c12 r3 r4 v gs1b v gs2b v ds1b c8 c2 c10 c16 c5 c6 c21 c14 c13 c9 c15 c3 c4 v ds2a c1 c p table 7. md7ic2050nr1(gnr1)(nbr1) test circuit com ponent designations and values ? 1880 mhz part description part number manufacturer c1, c2, c3, c4, c5, c6 10 f, 50 v chip capacitors grm55dr61h106ka88l murata c7, c8 6.8 pf chip capacitors atc600f6r8bt250xt atc c9, c10 15 pf chip capacitors atc600f150jt250xt atc c11, c12, c13, c14 33 pf chip capacitors atc600f330jt250xt atc c15, c16 6.8 f, 50 v chip capacitors grm32cf51h685za01l murata c17, c18, c19, c20 2.2 f, chip capacitors grm31cr61h225ka88l murata c21 0.9 pf chip capacitor atc600f0r9bt250xt atc r1, r2, r3, r4 4.7 k , 1/4 w chip resistors crcw12064701fkea vishay r5 50 , 1/4 w thick film chip resistor rk73b2bttd510j koa speer z1 1900 mhz band 90 , 3 db hybrid coupler gsc351-hyb1900 soshin pcb 0.020 , r = 3.5 ro4350b rogers
12 rf device data freescale semiconductor md7ic2050nr1 md7ic2050gnr1 md7ic2050nbr1 typical characteristics irl, input return loss (db) 1880 g ps acpr f, frequency (mhz) figure 16. output peak-to-average ratio compression (parc) broadband performance @ p out = 10 watts avg. ? 1880 mhz -22.1 -20.5 -20.9 -21.3 -21.7 30.5 -37 35.5 35.25 35 34.75 -34 -34.6 -35.2 -35.8 pae, power added efficiency (%) g ps , power gain (db) 1890 1900 1910 1920 34.5 -36.4 -22.5 parc (db) -1.32 -1.2 -1.23 -1.26 -1.29 -1.35 acpr (dbc) pae parc v dd = 28 vdc, p out = 10 w (avg.), i dq1a = i dq1b = 30 ma i dq2a = 230 ma, v gs2b = 1.4 vdc, single-carrier w-cdma 30.45 30.4 30.35 30.3 30.25 30.2 30.15 30.1 30.05 30 figure 17. broadband frequency response ? 1880 mhz 5 35 1450 f, frequency (mhz) 30 25 20 1650 gain (db) gain 1850 2050 2250 2450 irl -28 -16 -18 -20 -22 -24 irl (db) 15 -26 10 v dd = 28 vdc p in = 0 dbm i dq1a = i dq1b = 30 ma i dq2a = 230 ma v gs2b = 1.4 vdc 3.84 mhz channel bandwidth, input signal par = 9.9 db @ 0.01% probability on ccdf irl
md7ic2050nr1 md7ic2050gnr1 md7ic2050nbr1 13 rf device data freescale semiconductor v dd = 28 vdc, i dq1a = i dqb = 30 ma, i dq2a = 230 ma, v gs2b = 1.4 vdc, p out = 10 w avg. f mhz z in  z load  1725 24.58 + j28.09 13.68 - j7.83 1750 30.62 + j35.84 14.09 - j7.95 1775 39.80 + j43.59 14.42 - j8.13 1800 53.16 + j51.72 14.72 - j8.33 1825 75.48 + j54.32 15.02 - j8.57 1850 101.49 + j44.03 15.26 - j8.91 1875 127.43 + j11.39 15.47 - j9.29 1900 113.52 - j23.46 15.59 - j9.67 1925 92.03 - j36.95 15.66 - j10.15 1950 74.95 - j38.10 15.64 - j10.65 1975 64.95 - j35.67 15.59 - j11.22 2000 59.30 - j32.57 15.41 - j11.76 2025 55.28 - j28.90 15.20 - j12.36 2050 52.85 - j26.07 14.84 - j12.97 2075 51.34 - j23.91 14.42 - j13.56 note: measured with peaking side open. z in = device input impedance as measured from gate to ground. z load = test circuit impedance as measured from drain to ground. figure 18. series equivalent input and load impedance ? carrier side ? 1880 mhz z in z load device under test output matching network v dd = 28 vdc, i dq1a = i dqb = 30 ma, i dq2a = 230 ma, v gs2b = 1.4 vdc, p out = 10 w avg. f mhz z in  z load  1725 24.58 + j28.09 4.10 - j18.22 1750 30.62 + j35.84 3.61 - j17.55 1775 39.80 + j43.59 3.09 - j16.79 1800 53.16 + j51.72 2.61 - j16.00 1825 75.48 + j54.32 2.31 - j15.22 1850 101.49 + j44.03 1.99 - j14.46 1875 127.43 + j11.39 1.71 - j13.71 1900 113.52 - j23.46 1.47 - j12.96 1925 92.03 - j36.95 1.27 - j12.19 1950 74.95 - j38.10 1.15 - j11.44 1975 64.95 - j35.67 1.04 - j10.70 2000 59.30 - j32.57 1.00 - j9.97 2025 55.28 - j28.90 0.98 - j9.28 2050 52.85 - j26.07 1.05 - j8.57 2075 51.34 - j23.91 1.16 - j7.91 note: measured with carrier side open. z in = device input impedance as measured from gate to ground. z load = test circuit impedance as measured from drain to ground. figure 19. series equivalent input and load impedance ? peaking side ? 1880 mhz z in z load device under test output matching network
14 rf device data freescale semiconductor md7ic2050nr1 md7ic2050gnr1 md7ic2050nbr1 package dimensions
md7ic2050nr1 md7ic2050gnr1 md7ic2050nbr1 15 rf device data freescale semiconductor
16 rf device data freescale semiconductor md7ic2050nr1 md7ic2050gnr1 md7ic2050nbr1
md7ic2050nr1 md7ic2050gnr1 md7ic2050nbr1 17 rf device data freescale semiconductor
18 rf device data freescale semiconductor md7ic2050nr1 md7ic2050gnr1 md7ic2050nbr1
md7ic2050nr1 md7ic2050gnr1 md7ic2050nbr1 19 rf device data freescale semiconductor
20 rf device data freescale semiconductor md7ic2050nr1 md7ic2050gnr1 md7ic2050nbr1
md7ic2050nr1 md7ic2050gnr1 md7ic2050nbr1 21 rf device data freescale semiconductor
22 rf device data freescale semiconductor md7ic2050nr1 md7ic2050gnr1 md7ic2050nbr1
md7ic2050nr1 md7ic2050gnr1 md7ic2050nbr1 23 rf device data freescale semiconductor product documentation and software refer to the following documents to aid your design process. application notes ? an1907: solder reflow attach method for high power rf devices in plastic packages ? an1955: thermal measurement methodology of rf power amplifiers ? an1977: quiescent current thermal tracking circuit in the rf integrated circuit family ? an1987: quiescent current control for the rf integrated circuit device family ? an3263: bolt down mounting method for high power rf transistors and rfics in over-molded plastic packages ? an3789: clamping of high power rf transistors and rfics in over-molded plastic packages engineering bulletins ? eb212: using data sheet impedances for rf ldmos devices software ? electromigration mttf calculator ? rf high power model ? .s2p file for software, do a part number search at http://www.freescale.com, and select the part number link. go to the software & tools tab on the part's product summary page to download the respective tool. revision history the following table summarizes revisions to this document. revision date description 0 aug. 2009 ? initial release of data sheet 1 may 2010 ? corrected thermal characteristics table values for thermal resistance as follows: 50 w cw i dq1b changed from 6.1 to 8.2 c/w and v gs2b changed from 1.4 to 1.8 c/w; 10 w cw i dq1b changed from 3.6 to 8.3 c/w and v gs2b changed from *stage 2b is turned off to 1.9 c/w. thermal values now reflect the symmetrical doherty nature of the device, p. 2 ? changed esd human body model rating from class 1b to class 0 to reflect recent esd test results of the device, p. 3 ? added rf high power model availability to product software, p. 23
24 rf device data freescale semiconductor md7ic2050nr1 md7ic2050gnr1 md7ic2050nbr1 information in this document is provided solely to enable system and software implementers to use freescale semiconductor products. there are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. freescale semiconductor reserves the right to make changes without further notice to any products herein. freescale semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does freescale semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. typical parameters that may be provided in freescale semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. all operating parameters, including typicals, must be validated for each customer application by customer's technical experts. freescale semiconductor does not convey any license under its patent rights nor the rights of others. freescale semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the freescale semiconductor product could create a situation where personal injury or death may occur. should buyer purchase or use freescale semiconductor products for any such unintended or unauthorized application, buyer shall indemnify and hold freescale semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that freescale semiconductor was negligent regarding the design or manufacture of the part. freescale  and the freescale logo are trademarks of freescale semiconductor, inc. all other product or service names are the property of their respective owners. ? freescale semiconductor , inc. 2009-2010. all rights reserved. how to reach us: home page: www.freescale.com web support: http://www.freescale.com/support usa/europe or locations not listed: freescale semiconductor, inc. technical information center, el516 2100 east elliot road tempe, arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support europe, middle east, and africa: freescale halbleiter deutschland gmbh technical information center schatzbogen 7 81829 muenchen, germany +44 1296 380 456 (english) +46 8 52200080 (english) +49 89 92103 559 (german) +33 1 69 35 48 48 (french) www.freescale.com/support japan: freescale semiconductor japan ltd. headquarters arco tower 15f 1-8-1, shimo-meguro, meguro-ku, tokyo 153-0064 japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com asia/pacific: freescale semiconductor china ltd. exchange building 23f no. 118 jianguo road chaoyang district beijing 100022 china +86 10 5879 8000 support.asia@freescale.com for literature requests only: freescale semiconductor literature distribution center 1-800-441-2447 or +1-303-675-2140 fax: +1-303-675-2150 ldcforfreescalesemiconductor@hibbertgroup.com document number: md7ic2050n rev. 1, 5/2010


▲Up To Search▲   

 
Price & Availability of MD7IC2050NR110

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X