Part Number Hot Search : 
62133 58010 6C12B V7238SN SFR1A4 T24C0 BAS16LT1 HG106C
Product Description
Full Text Search
 

To Download TLW79 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 VISHAY
TLW.79..
Vishay Semiconductors
TELUXTM LED
\
Description
The TELUXTM series is a clear, non diffused LED for high end applications where supreme luminous flux is required. It is designed in an industry standard 7.62 mm square package utilizing highly developed (AS) AllnGaP and InGaN technologies. The supreme heat dissipation of TELUXTM allows applications at high ambient temperatures. All packing units are binned for luminous flux and color to achieve best homogenous light appearance in application.
16 012
Features
* * * * * Utilizing (AS) AlInGaP and InGaN technologies High luminous flux Supreme heat dissipation: RthJP is 90 K/W High operating temperature: Tj up to + 125 C Type TLWR meets SAE and ECE color requirements * Packed in tubes for automatic insertion * Luminous flux and color categorized for each tube * Small mechanical tolerances allow precise usage of external reflectors or lightguides
* TLWR and TLWY types additionally forward voltage categorized * ESD-withstand voltage: > 2 kV acc. to MIL STD 883 D, Method 3015.7 for AlInGaP, > 1 kV for InGaN
Applications
* Exterior lighting * Dashboard illumination * Tail-, Stop - and Turn Signals of motor vehicles * Replaces incandescent lamps * Traffic signals and signs
Parts Table
Part TLWR7900 TLWO7900 TLWY7900 TLWTG7900 TLWBG7900 TLWB7900 TLWW7900 Color, Luminous Intensity Red, V = (1500 to 3000) mlm Softorange, V = (1500 to 3000) mlm Yellow, V = (1000 to 2400) mlm 45 45 45 Angle of Half Intensity () Technology AllnGaP on GaAs AllnGaP on GaAs AllnGaP on GaAs InGaN on SiC InGaN on SiC InGaN on SiC InGaN / YAG on SiC
True green, V = (630 to 1800) mlm 45 Blue green, V = (400 to 1250) mlm 45 Blue, V = (200 to 6300) mlm White, V = (400 to 1250) mlm 45 45
Document Number 83144 Rev. A4, 24-Mar-03
www.vishay.com 1
TLW.79..
Vishay Semiconductors Absolute Maximum Ratings
Tamb = 25 C, unless otherwise specified TLWR7900 , TLWO7900 , TLWY7900 Parameter Reverse voltage DC forward current Surge forward current Power dissipation Junction temperature Operating temperature range Storage temperature range Soldering temperature t 5 s, 1.5 mm from body preheat temperature 100 C/ 30 sec. with cathode heatsink of 70 mm2 RthJP Test condition IR = 10 A Tamb 50 C tp 10 s Tamb 50 C Tamb 50 C Tamb 50 C Tamb 50 C Junction temperature Operating temperature range Storage temperature range Soldering temperature t 5 s, 1.5 mm from body preheat temperature 100 C/ 30 sec. with cathode heatsink of 70 mm2 RthJP 90 Symbol VR IF IFSM PV PV PV PV Tj Tamb Tstg Tsd 90 Test condition IR = 10 A Tamb 85 C tp 10 s Tamb 85 C Symbol VR IF IFSM PV Tj Tamb Tstg Tsd Value 10 70 1 187 125 - 40 to + 110 - 55 to + 110 260
VISHAY
Unit V mA A mW C C C C
Thermal resistance junction/ ambient Thermal resistance junction/pin
RthJA
200
K/W K/W
TLWTG7900 , TLWBG7900 , TLWB7900 , TLWW7900 Parameter Reverse voltage DC forward current Surge forward current Power dissipation Value 5 50 0.1 230 230 230 255 100 - 40 to + 100 - 55 to + 100 260 Unit V mA A mW mW mW mW C C C C
Thermal resistance junction/ ambient Thermal resistance junction/pin
RthJA
200
K/W K/W
Optical and Electrical Characteristics
Tamb = 25 C, unless otherwise specified
Red
TLWR7900 Parameter Total flux Luminous intensity/Total flux Dominant wavelength Peak wavelength Angle of half intensity Total included angle Forward voltage Test condition IF = 70 mA, RthJA = 200 K/W IF = 70 mA, RthJA = 200 K/W IF = 70 mA, RthJA = 200 K/W IF = 70 mA, RthJA = 200 K/W IF = 70 mA, RthJA = 200 K/W 90 % of Total Flux Captured IF = 70 mA, RthJA = 200 K/W Symbol V IV/V d p VF 1.83 611 Min 1500 Typ. 2100 0.7 618 624 45 100 2.2 2.67 634 Max 3000 Unit mlm mcd/mlm nm nm deg deg V
www.vishay.com 2
Document Number 83144 Rev. A4, 24-Mar-03
VISHAY
Parameter Reverse voltage Junction capacitance Temperature coefficient of dom Test condition IR = 10 A VR = 0, f = 1 MHz IF = 50 mA Symbol VR Cj TCdom Min 10 Typ. 20 17 0.05
TLW.79..
Vishay Semiconductors
Max Unit V pF nm/K
Soft Orange
TLWO7900 Parameter Total flux Luminous intensity/Total flux Dominant wavelength Peak wavelength Angle of half intensity Total included angle Forward voltage Reverse voltage Junction capacitance Temperature coefficient of dom Test condition IF = 70 mA, RthJA = 200 K/W IF = 70 mA, RthJA = 200 K/W IF = 70 mA, RthJA = 200 K/W IF = 70 mA, RthJA = 200 K/W IF = 70 mA, RthJA = 200 K/W 90 % of Total Flux Captured IF = 70 mA, RthJA = 200 K/W IR = 10 A VR = 0, f = 1 MHz IF = 50 mA Symbol V IV/V d p VF VR Cj TCdom 1.83 10 598 Min 1500 Typ. 2100 0.7 605 610 45 100 2.2 20 17 0.06 2.67 611 Max 3000 Unit mlm mcd/mlm nm nm deg deg V V pF nm/K
Yellow
TLWY7900 Parameter Total flux Luminous intensity/Total flux Dominant wavelength Peak wavelength Angle of half intensity Total included angle Forward voltage Reverse voltage Junction capacitance Temperature coefficient of dom Test condition IF = 70 mA, RthJA = 200 K/W IF = 70 mA, RthJA = 200 K/W IF = 70 mA, RthJA = 200 K/W IF = 70 mA, RthJA = 200 K/W IF = 70 mA, RthJA = 200 K/W 90 % of Total Flux Captured IF = 70 mA, RthJA = 200 K/W IR = 10 A VR = 0, f = 1 MHz IF = 50 mA Symbol V IV/V d p VF VR Cj TCdom 1.83 10 585 Min 1000 Typ. 1400 0.7 592 594 45 100 2.1 15 32 0.1 2.67 597 Max 2400 Unit mlm mcd/mlm nm nm deg deg V V pF nm/K
True green
TLWTG7900 Parameter Total flux Luminous intensity/Total flux Dominant wavelength Peak wavelength Angle of half intensity Total included angle Forward voltage Reverse voltage Junction capacitance Temperature coefficient of dom Test condition IF = 50 mA, RthJA = 200 K/W IF = 50 mA, RthJA = 200 K/W IF = 50 mA, RthJA = 200 K/W IF = 50 mA, RthJA = 200 K/W IF = 50 mA, RthJA = 200 K/W 90 % of Total Flux Captured IF = 50 mA, RthJA = 200 K/W IR = 10 A VR = 0, f = 1 MHz IF = 30 mA Symbol V IV/V d p VF VR Cj TCdom 5 509 Min 630 Typ. 900 0.7 523 518 45 100 4.2 10 50 0.02 4.7 529 Max 1800 Unit mlm mcd/mlm nm nm deg deg V V pF nm/K
Document Number 83144 Rev. A4, 24-Mar-03
www.vishay.com 3
TLW.79..
Vishay Semiconductors
VISHAY
Optical and Electrical Characteristics
Tamb = 25 C, unless otherwise specified
Blue green
TLWBG7900 Parameter Total flux Luminous intensity/Total flux Dominant wavelength Peak wavelength Angle of half intensity Total included angle Forward voltage Reverse voltage Junction capacitance Temperature coefficient of dom Test condition IF = 50 mA, RthJA = 200 K/W IF = 50 mA, RthJA = 200 K/W IF = 50 mA, RthJA = 200 K/W IF = 50 mA, RthJA = 200 K/W IF = 50 mA, RthJA = 200 K/W 90 % of Total Flux Captured IF = 50 mA, RthJA = 200 K/W IR = 10 A VR = 0, f = 1 MHz IF = 30 mA Symbol V IV/V d p VF VR Cj TCdom 5 492 Min 400 Typ. 700 0.7 505 503 45 100 4.2 10 50 0.02 4.7 510 Max 1250 Unit mlm mcd/mlm nm nm deg deg V V pF nm/K
Blue
TLWB7900 Parameter Total flux Luminous intensity/Total flux Dominant wavelength Peak wavelength Angle of half intensity Total included angle Forward voltage Reverse voltage Junction capacitance Temperature coefficient of dom Test condition IF = 50 mA, RthJA = 200 K/W IF = 50 mA, RthJA = 200 K/W IF = 50 mA, RthJA = 200 K/W IF = 50 mA, RthJA = 200 K/W IF = 50 mA, RthJA = 200 K/W 90 % of Total Flux Captured IF = 50 mA, RthJA = 200 K/W IR = 10 A VR = 0, f = 1 MHz IF = 30 mA Symbol V IV/V d p VF VR Cj TCdom 5 462 Min 200 Typ. 330 0.7 470 460 45 100 4.3 10 50 0.03 4.7 476 Max 630 Unit mlm mcd/mlm nm nm deg deg V V pF nm/K
White
TLWW7900 Parameter Total flux Luminous intensity/Total flux Color temperature Angle of half intensity Total included angle Forward voltage Reverse voltage Junction capacitance Test condition IF = 50 mA, RthJA = 200 K/W IF = 50 mA, RthJA = 200 K/W IF = 50 mA, RthJA = 200 K/W IF = 50 mA, RthJA = 200 K/W 90 % of Total Flux Captured IF = 50 mA, RthJA = 200 K/W IR = 10 A VR = 0, f = 1 MHz Symbol V IV/V TK VF VR Cj 5 Min 400 Typ. 650 0.7 5500 45 100 4.3 10 50 5.1 Max 1250 Unit mlm mcd/mlm K deg deg V V pF
www.vishay.com 4
Document Number 83144 Rev. A4, 24-Mar-03
VISHAY
Typical Characteristics (Tamb = 25 C unless otherwise specified)
200
PV - Power Dissipation ( mW )
TLW.79..
Vishay Semiconductors
60 50 40 30 20 10 RthJA=200K/W 0 0 20 40 60 80 100 120 Tamb - Ambient Temperature ( C ) 0
16067
175 150 125 100 75 50 25 0 RthJA=200K/W Red
I F - Forward Current ( mA )
15982
20 40 60 80 100 120 Tamb - Ambient Temperature ( C )
Figure 1. Power Dissipation vs. Ambient Temperature
Figure 4. Forward Current vs. Ambient Temperature for InGaN
10000
100
I F - Forward Current ( mA )
Red 80 60 40 20 RthJA=200K/W 0 0 20 40 60 80 100 120 Tamb - Ambient Temperature ( C )
IF - Forward Current ( mA )
Red, Softorange, Yellow 1000 tp/T=0.01 0.02
Tambv85C 0.05 0.1
100 1 10 0.5 0.2
1 0.01
16010
0.1
1
10
100
15983
tp - Pulse Length ( ms )
Figure 2. Forward Current vs. Ambient Temperature
Figure 5. Forward Current vs. Pulse Length
250 200 175 150 125 100 75 50 25 0 0
16066
0
Iv rel - Relative Luminous Intensity
10
20 30
225
PV - Power Dissipation ( mW )
40 1.0 0.9 0.8 0.7 50 60 70 80 0.6 0.4 0.2 0 0.2 0.4 Angular Displacement 0.6
RthJA=200K/W 20 40 60 80 100 120 Tamb - Ambient Temperature ( C )
16200
Figure 3. Power Dissipation vs. Ambient Temperature
Figure 6. Rel. Luminous Intensity vs. Angular Displacement
Document Number 83144 Rev. A4, 24-Mar-03
www.vishay.com 5
TLW.79..
Vishay Semiconductors
VISHAY
100 90 70 60 50 40 30 20 10 0 0
16201
1.8
FVrel - Relative Luminous Flux
80
% Total Luminous Flux
1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 -40 -20
Red, Softorange
IF = 70 mA
25 50 75 100 Total Included Angle (Degrees)
125
15976
0
20
40
60
80
100
Tamb - Ambient Temperature ( C )
Figure 7. Percentage Total Luminous Flux vs. Total Included Angle for 90 emission angle
Figure 10. Rel. Luminous Flux vs. Ambient Temperature
230
ISpec- Specific Luminous Flux
220 210
RthJA in K/W
Padsize 8 mm2 per Anode Pin
Red, Softorange 1.0
200 190 180 170 160 0 50
0.1 100 150 200 250 Cathode Padsize in mm2 300
15980
1
16009
10 IF - Forward Current ( mA )
100
Figure 8. Thermal Resistance Junction Ambient vs. Cathode Padsize
Figure 11. Specific Luminous Flux vs. Forward Current
100 80 70 60 50 40 30 20 10 0
15974
10.00 Red Yellow
IVrel- Relative Luminous Flux
90
I F - Forward Current ( mA )
Red 1.00
0.10
1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 VF - Forward Voltage ( V )
0.01 1
15978
10 IF - Forward Current ( mA )
100
Figure 9. Forward Current vs. Forward Voltage
Figure 12. Relative Luminous Flux vs. Forward Current
www.vishay.com 6
Document Number 83144 Rev. A4, 24-Mar-03
VISHAY
TLW.79..
Vishay Semiconductors
605.0 1.2 Red IF = 50 mA 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 570 580 590 600 610 620 630 640 650 660 670 l - Wavelength ( nm )
I Vrel- Relative Luminous Intensity
Dominant Wavelength l (nm)
604.5 Softorange 604.0
603.5
603.0 0
16436
10
20
30
40
50
60
70
IF - Forward Current ( mA )
16007
Figure 13. Relative Intensity vs. Wavelength
Figure 16. Dominant Wavelength vs. Forward Current
1.2 IF = 50 mA 1.1 Softorange 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 560 570 580 590 600 610 620 630 640 650 660 - Wavelength ( nm )
I Vrel- Relative Luminous Intensity
100 90
I F - Forward Current ( mA )
Yellow
80 70 60 50 40 30 20 10 0 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 VF - Forward Voltage ( V )
16314
15975
Figure 14. Relative Intensity vs. Wavelength
Figure 17. Forward Current vs. Forward Voltage
619.0 2.0
Dominant Wavelength l (nm)
618.5
FVrel - Relative Luminous Flux
1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 -40
Yellow
IF = 70 mA
618.0 Red 617.5 617.0 616.5 616.0 0 10 20 30 40 50 60 70 IF - Forward Current ( mA )
16434
15977
-20 0 20 40 60 80 Tamb - Ambient Temperature ( C )
100
Figure 15. Dominant Wavelength vs. Forward Current
Figure 18. Rel. Luminous Flux vs. Ambient Temperature
Document Number 83144 Rev. A4, 24-Mar-03
www.vishay.com 7
TLW.79..
Vishay Semiconductors
VISHAY
592.0 Yellow
ISpec- Specific Luminous Flux
Dominant Wavelength l (nm)
591.5
1.0
591.0
Yellow
590.5
590.0 0.1 1
15981
0 10 IF - Forward Current ( mA ) 100
16435
10
20
30
40
50
60
70
IF - Forward Current ( mA )
Figure 19. Specific Luminous Flux vs. Forward Current
Figure 22. Dominant Wavelength vs. Forward Current
10.00 Yellow
IVrel- Relative Luminous Flux I F - Forward Current ( mA )
100 90 80 70 60 50 40 30 20 10 0 1 10 IF - Forward Current ( mA ) 100
16037
True Green
1.00
0.10
0.01
15979
2.5
3.0
3.5 4.0 4.5 5.0 VF - Forward Voltage ( V )
5.5
Figure 20. Relative Luminous Flux vs. Forward Current
Figure 23. Forward Current vs. Forward Voltage
16008
1.2 Yellow IF = 50 mA 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 540 550 560 570 580 590 600 610 620 630 640 l - Wavelength ( nm )
1.8
FVrel - Relative Luminous Flux
I Vrel- Relative Luminous Intensity
1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 -40
True Green
IF = 50 mA
16056
-20 0 20 40 60 80 Tamb - Ambient Temperature ( C )
100
Figure 21. Relative Intensity vs. Wavelength
Figure 24. Rel. Luminous Flux vs. Ambient Temperature
www.vishay.com 8
Document Number 83144 Rev. A4, 24-Mar-03
VISHAY
TLW.79..
Vishay Semiconductors
541 True Green
ISpec- Specific Luminous Flux Dominant Wavelength l (nm)
539 537 535 533 531 529 527 525 523 521 true green
1.0
0.1 1
16038
10 IF - Forward Current ( mA )
100
16301
0
10
20
30
40
50
IF - Forward Current ( mA )
Figure 25. Specific Luminous Flux vs. Forward Current
Figure 28. Dominant Wavelength vs. Forward Current
10.00
IVrel- Relative Luminous Flux
100 True Green
I F - Forward Current ( mA )
90 80 70 60 50 40 30 20 10 0 2.5
16058
Blue Green
1.00
0.10
0.01 1
16039
10 IF - Forward Current ( mA )
100
3.0
3.5 4.0 4.5 5.0 VF - Forward Voltage ( V )
5.5
Figure 26. Relative Luminous Flux vs. Forward Current
Figure 29. Forward Current vs. Forward Voltage
16068
1.2 True Green IF = 30 mA 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 460 480 500 520 540 560 580 600 620 l - Wavelength ( nm )
1.8
FVrel - Relative Luminous Flux
IVrel- Relative Luminous Intensity
1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 -40
Blue Green
IF = 50 mA
16061
-20 0 20 40 60 80 Tamb - Ambient Temperature ( C )
100
Figure 27. Relative Intensity vs. Wavelength
Figure 30. Rel. Luminous Flux vs. Ambient Temperature
Document Number 83144 Rev. A4, 24-Mar-03
www.vishay.com 9
TLW.79..
Vishay Semiconductors
VISHAY
511
Dominant Wavelength l (nm)
510 509 508 507 506 505 504 503 502 0 10 20 30 40 50 Blue Green
Blue Green
ISpec- Specific Luminous Flux
1.0
0.1 1
16059
10 IF - Forward Current ( mA )
100
16300
IF - Forward Current ( mA )
Figure 31. Specific Luminous Flux vs. Forward Current
Figure 34. Dominant Wavelength vs. Forward Current
10.00
IVrel- Relative Luminous Flux
100 Blue Green
I F - Forward Current ( mA )
90 80 70 60 50 40 30 20 10 0 2.5
16040
1.00
Blue Truegreen
0.10
0.01 1
16060
10 IF - Forward Current ( mA )
100
3.0
3.5 4.0 4.5 5.0 VF - Forward Voltage ( V )
5.5
Figure 32. Relative Luminous Flux vs. Forward Current
Figure 35. Forward Current vs. Forward Voltage
1.2 Blue Green IF = 50 mA 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 420 440 460 480 500 520 540 560 580 600 l - Wavelength ( nm )
IVrel- Relative Luminous Intensity
1.8
FVrel - Relative Luminous Flux
1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 -40
Blue
IF = 50 mA
16070
16057
-20 0 20 40 60 80 Tamb - Ambient Temperature ( C )
100
Figure 33. Relative Intensity vs. Wavelength
Figure 36. Rel. Luminous Flux vs. Ambient Temperature
www.vishay.com 10
Document Number 83144 Rev. A4, 24-Mar-03
VISHAY
TLW.79..
Vishay Semiconductors
473 Blue
ISpec- Specific Luminous Flux Dominant Wavelength l (nm)
472
1.0
471
blue
470
469 0.1 1
16041
0 10 IF - Forward Current ( mA ) 100
16299
10
20
30
40
50
IF - Forward Current ( mA )
Figure 37. Specific Luminous Flux vs. Forward Current
Figure 40. Dominant Wavelength vs. Forward Current
10.00
IVrel- Relative Luminous Flux
100 Blue
I F - Forward Current ( mA )
90 80 70 60 50 40 30 20 10 0 2.5
16062
White
1.00
0.10
0.01 1
16042
10 IF - Forward Current ( mA )
100
3.0
3.5 4.0 4.5 5.0 VF - Forward Voltage ( V )
5.5
Figure 38. Relative Luminous Flux vs. Forward Current
Figure 41. Forward Current vs. Forward Voltage
16069
1.2 Blue IF = 30 mA 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 400 420 440 460 480 500 520 540 560 l - Wavelength ( nm )
1.8
FVrel - Relative Luminous Flux
I Vrel- Relative Luminous Intensity
1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 -40
White
IF = 50 mA
16065
-20 0 20 40 60 80 Tamb - Ambient Temperature ( C )
100
Figure 39. Relative Intensity vs. Wavelength
Figure 42. Rel. Luminous Flux vs. Ambient Temperature
Document Number 83144 Rev. A4, 24-Mar-03
www.vishay.com 11
TLW.79..
Vishay Semiconductors
VISHAY
0.345 White
ISpec- Specific Luminous Flux f - Chromaticity coordinate shift (x,y)
White 0.340 X 0.335 0.330 Y 0.325 0.320 0.315
1.0
0.1 1
16063
10 IF - Forward Current ( mA )
100
16198
0
10
20
30
40
50
60
IF - Forward Current (mA)
Figure 43. Specific Luminous Flux vs. Forward Current
Figure 46. Chromaticity Coordinate Shift vs. Forward Current
10.00
IVrel- Relative Luminous Flux
White 1.00
0.10
0.01 1
16064
10 IF - Forward Current ( mA )
100
Figure 44. Relative Luminous Flux vs. Forward Current
16071
1.2 White IF = 50 mA 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 400 450 500 550 600 650 700 750 800 l - Wavelength ( nm )
IVrel- Relative Luminous Intensity
Figure 45. Relative Intensity vs. Wavelength
www.vishay.com 12
Document Number 83144 Rev. A4, 24-Mar-03
VISHAY
Package Dimensions in mm
TLW.79..
Vishay Semiconductors
15984
Document Number 83144 Rev. A4, 24-Mar-03
www.vishay.com 13
TLW.79..
Vishay Semiconductors Ozone Depleting Substances Policy Statement
It is the policy of Vishay Semiconductor GmbH to 1. Meet all present and future national and international statutory requirements.
VISHAY
2. Regularly and continuously improve the performance of our products, processes, distribution and operatingsystems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment. It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs). The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances. Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents. 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively. Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.
We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use. Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423
www.vishay.com 14
Document Number 83144 Rev. A4, 24-Mar-03


▲Up To Search▲   

 
Price & Availability of TLW79

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X