|
If you can't view the Datasheet, Please click here to try to view without PDF Reader . |
|
Datasheet File OCR Text: |
AOD454Y N-Channel Enhancement Mode Field Effect Transistor General Description The AOD454Y uses advanced trench technology and design to provide excellent RDS(ON) with low gate charge. This device is suitable for use in PWM, load switching and general purpose applications. Standard product AOD454Y is Pb free, inside and out. It uses Pb-free die attach and plating material(meets ROHS & Sony 259 specifications). AOD454YL is a Green Product ordering option. AOD454Y and AOD454YL are electrically identical. TO-252 D-PAK Features VDS (V) = 40V ID = 12 A (VGS = 10V) RDS(ON) < 33 m (VGS = 10V) RDS(ON) < 47 m (VGS = 4.5V) D Top View Drain Connected to Tab G S G D S Absolute Maximum Ratings TA=25C unless otherwise noted Parameter Symbol VDS Drain-Source Voltage VGS Gate-Source Voltage Continuous Drain Current G Pulsed Drain Current Avalanche Current C C C Maximum 40 20 12 12 30 12 20 20 10 2 1.3 -55 to 175 Units V V A A mJ W W C TC=25C TC=100C ID IDM IAR EAR PD PDSM TJ, TSTG TC=25C Repetitive avalanche energy L=0.1mH Power Dissipation B Power Dissipation A TC=100C TA=25C TA=70C Junction and Storage Temperature Range Thermal Characteristics Parameter Maximum Junction-to-Ambient A Maximum Junction-to-Ambient A Maximum Junction-to-Case B Symbol t 10s Steady-State Steady-State RJA RJC Typ 17.4 50 4 Max 30 60 7.5 Units C/W C/W C/W Alpha & Omega Semiconductor, Ltd. AOD454Y Electrical Characteristics (TJ=25C unless otherwise noted) Symbol Parameter Conditions ID=10mA, VGS=0V VDS=32V, VGS=0V TJ=55C VDS=0V, VGS=20V VDS=VGS, ID=250A VGS=10V, VDS=5V VGS=10V, ID=12A RDS(ON) gFS VSD IS Static Drain-Source On-Resistance VGS=4.5V, ID=6A Forward Transconductance VDS=5V, ID=12A IS=1A, VGS=0V Diode Forward Voltage Maximum Body-Diode Continuous Current TJ=125C 1 30 25 39 34 25 0.76 1 12 404 VGS=0V, VDS=20V, f=1MHz VGS=0V, VDS=0V, f=1MHz 95 37 2.7 9.2 VGS=10V, VDS=20V, ID=12A 4.5 1.6 2.6 3.5 VGS=10V, VDS=20V, RL=1.7, RGEN=3 IF=12A, dI/dt=100A/s 6 13.2 3.5 22.9 18.3 33 52 47 2.3 Min 40 1 5 100 3 Typ Max Units V A nA V A m m S V A pF pF pF nC nC nC nC ns ns ns ns ns nC STATIC PARAMETERS BVDSS Drain-Source Breakdown Voltage IDSS IGSS VGS(th) ID(ON) Zero Gate Voltage Drain Current Gate-Body leakage current Gate Threshold Voltage On state drain current DYNAMIC PARAMETERS Ciss Input Capacitance Coss Crss Rg Output Capacitance Reverse Transfer Capacitance Gate resistance SWITCHING PARAMETERS Qg(10V) Total Gate Charge Qg(4.5V) Total Gate Charge Qgs Qgd tD(on) tr tD(off) tf trr Qrr Gate Source Charge Gate Drain Charge Turn-On DelayTime Turn-On Rise Time Turn-Off DelayTime Turn-Off Fall Time Body Diode Reverse Recovery Time Body Diode Reverse Recovery Charge IF=12A, dI/dt=100A/s A: The value of R JA is measured with the device mounted on 1in 2 FR-4 board with 2oz. Copper, in a still air environment with T A =25C. The Power dissipation P DSM is based on R JA and the maximum allowed junction temperature of 150C. The value in any given application depends on the user's specific board design, and the maximum temperature of 175C may be used if the PCB allows it. B. The power dissipation P D is based on T J(MAX)=175C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used. C: Repetitive rating, pulse width limited by junction temperature T J(MAX)=175C. D. The R JA is the sum of the thermal impedence from junction to case R JC and case to ambient. E. The static characteristics in Figures 1 to 6 are obtained using <300 s pulses, duty cycle 0.5% max. F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of T J(MAX)=175C. G. The maximum current rating is limited by bond-wires. H. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T A=25C. The SOA curve provides a single pulse rating. Rev 0: Oct. 2005 THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE. Alpha & Omega Semiconductor, Ltd. AOD454Y TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 30 25 20 ID (A) 15 10 VGS=3.5V 5 0 0 1 2 3 4 5 VDS (Volts) Fig 1: On-Region Characteristics 50 Normalized On-Resistance 45 RDS(ON) (m) 40 35 30 25 20 0 4 8 12 16 20 0.8 0 25 50 75 100 125 150 175 Temperature (C) Figure 4: On-Resistance vs. Junction Temperature ID (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage VGS=4.5V 1.8 VGS=10V ID=12A 0 2 2.5 3 3.5 4 4.5 VGS(Volts) Figure 2: Transfer Characteristics 5 25C 20 10V 5V 4.5V 15 4V ID(A) 10 125C VDS=5V 1.6 1.4 VGS=4.5V ID=6A VGS=10V 1.2 1 100 90 80 RDS(ON) (m) 70 60 50 40 30 20 10 2 4 6 8 10 VGS (Volts) Figure 5: On-Resistance vs. Gate-Source Voltage 25C 125C IS (A) ID=12A 1.0E+01 1.0E+00 1.0E-01 1.0E-02 1.0E-03 1.0E-04 1.0E-05 0.0 0.2 0.4 0.6 0.8 1.0 1.2 VSD (Volts) Figure 6: Body-Diode Characteristics 25C 125C Alpha & Omega Semiconductor, Ltd. AOD454Y TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 10 8 VGS (Volts) 6 4 2 100 0 0 2 4 6 8 10 Qg (nC) Figure 7: Gate-Charge Characteristics 100.0 0 0 5 20 25 30 35 VDS (Volts) Figure 8: Capacitance Characteristics 10 15 40 VDS=20V ID=12A Capacitance (pF) 700 600 500 400 300 200 Coss Crss Ciss TJ(Max)=175C, TA=25C 10s RDS(ON) limited 1ms 10ms 200 160 Power (W) 120 80 40 0 TJ(Max)=175C TA=25C 100s 10.0 ID (Amps) 1.0 DC 0.1 0.1 1 10 100 VDS (Volts) Figure 9: Maximum Forward Biased Safe Operating Area (Note F) 10 ZJC Normalized Transient Thermal Resistance 0.0001 0.001 0.01 0.1 1 10 Pulse Width (s) Figure 10: Single Pulse Power Rating Junction-toCase (Note F) D=Ton/T TJ,PK=TC+PDM.ZJC.RJC RJC=7.5C/W In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse 1 0.1 PD Ton Single Pulse T 0.01 0.00001 0.0001 0.001 0.01 0.1 1 10 100 Pulse Width (s) Figure 11: Normalized Maximum Transient Thermal Impedance (Note F) Alpha & Omega Semiconductor, Ltd. AOD454Y TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 14 ID(A), Peak Avalanche Current 12 10 8 6 4 2 0 0.00001 0.0001 0.001 Time in avalanche, t A (s) Figure 12: Single Pulse Avalanche capability TA=25C 25 Power Dissipation (W) tA = L ID BV - VDD 20 15 10 5 0 0 25 50 75 100 125 150 175 TCASE (C) Figure 13: Power De-rating (Note B) 14 12 50 40 TA=25C Current rating ID(A) 10 Power (W) 8 6 4 10 2 0 0 25 50 75 100 125 150 175 TCASE (C) Figure 14: Current De-rating (Note B) 0 0.001 0.01 0.1 1 10 100 1000 Pulse Width (s) Figure 15: Single Pulse Power Rating Junction-toAmbient (Note H) 30 20 10 ZJA Normalized Transient Thermal Resistance 1 D=Ton/T TJ,PK=TA+PDM.ZJA.RJA RJA=60C/W In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse 0.1 PD Single Pulse Ton 0.001 0.00001 0.0001 0.001 0.01 0.1 1 10 100 1000 Pulse Width (s) Figure 16: Normalized Maximum Transient Thermal Impedance (Note H) T 0.01 Alpha & Omega Semiconductor, Ltd. |
Price & Availability of AOD454Y |
|
|
All Rights Reserved © IC-ON-LINE 2003 - 2022 |
[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy] |
Mirror Sites : [www.datasheet.hk]
[www.maxim4u.com] [www.ic-on-line.cn]
[www.ic-on-line.com] [www.ic-on-line.net]
[www.alldatasheet.com.cn]
[www.gdcy.com]
[www.gdcy.net] |