Power MOSFET 40 V, 123 A, Single N-Channel DPAK

Features

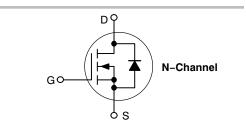
- Low R_{DS(on)} to Minimize Conduction Losses
- MSL 1/260°C
- AEC Q101 Qualified and PPAP Capable
- 100% Avalanche Tested
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- Motor Drivers
- Pump Drivers for Automotive Braking, Steering and Other High Current Systems

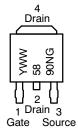
MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Param	Symbol	Value	Unit		
Drain-to-Source Voltage	V _{DSS}	40	V		
Gate-to-Source Voltage	V _{GS}	±20	V		
Continuous Drain Cur-		T _C = 25°C	I _D	123	Α
rent (R _{θJC})		T _C = 85°C		95	
Power Dissipation $(R_{\theta JC})$	Steady	T _C = 25°C	P _D	107	W
Continuous Drain Cur-	State	T _A = 25°C	I _D	24	Α
rent (R _{θJA}) (Note 1)		T _A = 85°C		18.5	
Power Dissipation $(R_{\theta JA})$ (Note 1)		T _A = 25°C	P _D	4.0	W
Pulsed Drain Current	t _p =10μs	T _A = 25°C	I _{DM}	400	Α
Current Limited by Packa	I _{DmaxPkg}	100	Α		
Operating Junction and	T _J , T _{stg}	-55 to 175	°C		
Source Current (Body Di	I _S	100	Α		
Drain to Source dV/dt	dV/dt	6.0	V/ns		
Single Pulse Drain-to-S ergy (V_{DD} = 32 V, V_{GS} = L = 0.3 mH, $I_{L(pk)}$ = 40 A	E _{AS}	240	mJ		
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			T_L	260	°C


Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

ON Semiconductor®

http://onsemi.com


V _{(BR)DSS}	R _{DS(on)}	I _D	
40 V	$3.7~\text{m}\Omega$ @ $10~\text{V}$	123 A	

DPAK (Bent Lead) STYLE 2

MARKING DIAGRAMS & PIN ASSIGNMENT

Y = Year

WW = Work Week

5890N = Device Code

G = Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter		Value	Unit
Junction-to-Case (Drain)	$R_{ heta JC}$	1.4	°C/W
Junction-to-Ambient - Steady State (Note 1)	$R_{ heta JA}$	37	
Junction-to-Ambient - Steady State (Note 2)	$R_{ hetaJA}$	76	

Surface-mounted on FR4 board using 650 mm² pad size, 2 oz Cu.
 Surface-mounted on FR4 board using 36 mm² pad size.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS	'		'		'		
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		40			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				40		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = 40 V	$T_J = 25^{\circ}C$ $T_J = 150^{\circ}C$			1.0 100	μΑ
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS}	= ±20 V			± 100	nA
ON CHARACTERISTICS (Note 3)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D =$	= 250 μA	1.5		3.5	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				7.4		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V, I _D = 50 A			2.9	3.7	mΩ
Forward Transconductance	gFS	V _{DS} = 15 V, I _D = 15 A			16.8		S
CHARGES AND CAPACITANCES							<u></u>
Input Capacitance	C _{iss}	V _{GS} = 0 V, f = 1.0 MHz, V _{DS} = 12 V			4975		pF
Output Capacitance	C _{oss}				785		
Reverse Transfer Capacitance	C _{rss}				490		1
Input Capacitance	C _{iss}	$V_{GS} = 0 \text{ V, f} = 1.0 \text{ MHz,}$ $V_{DS} = 25 \text{ V}$			4760		pF
Output Capacitance	C _{oss}				580		7
Reverse Transfer Capacitance	C _{rss}				385]
Total Gate Charge	Q _{G(TOT)}				74	100	nC
Threshold Gate Charge	Q _{G(TH)}	V_{GS} = 10 V, V_{D}	_S = 15 V,		5.0		1
Gate-to-Source Charge	Q _{GS}	$I_{D} = 50 \text{ A}$			17		1
Gate-to-Drain Charge	Q_{GD}				16		1
SWITCHING CHARACTERISTICS (Not	e 4)						
Turn-On Delay Time	t _{d(on)}	V_{GS} = 10 V, V_{DS} = 20 V, I_{D} = 50 A, R_{G} = 2.0 Ω			14		ns
Rise Time	t _r				55		1
Turn-Off Delay Time	t _{d(off)}				35		1
Fall Time	t _f				7.0		1

Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperatures.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit	
DRAIN-SOURCE DIODE CHARACTERISTICS								
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V, I _S = 50 A	T _J = 25°C		0.9	1.2	V	
		V _{GS} = 0 V, I _S = 20 A	T _J = 25°C		0.8	1.0		
Reverse Recovery Time	t _{RR}	$V_{GS} = 0 \text{ V, dls/dt} = 100 \text{ A/}\mu\text{s,}$ $I_{S} = 50 \text{ A}$			35		ns	
Charge Time	ta				20			
Discharge Time	tb				15			
Reverse Recovery Charge	Q _{RR}				40		nC	

TYPICAL PERFORMANCE CURVES

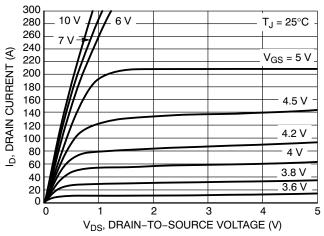


Figure 1. On-Region Characteristics

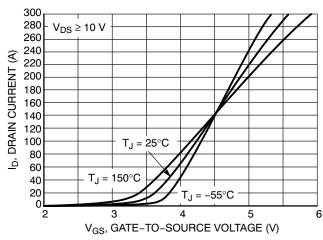


Figure 2. Transfer Characteristics

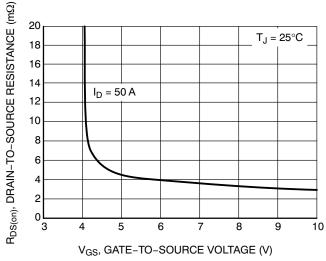


Figure 3. On-Resistance vs. Drain Current

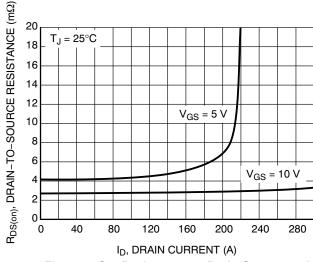


Figure 4. On-Resistance vs. Drain Current and Gate Voltage

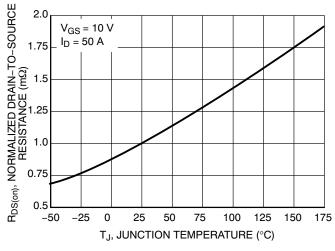


Figure 5. On–Resistance Variation with Temperature

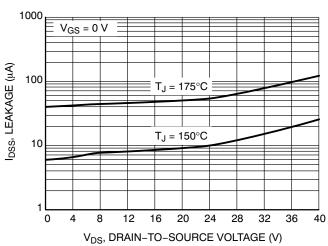


Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL PERFORMANCE CURVES

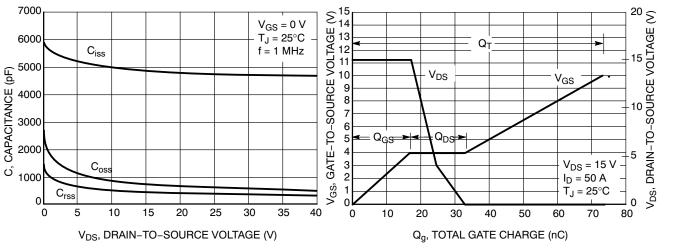


Figure 7. Capacitance Variation

Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

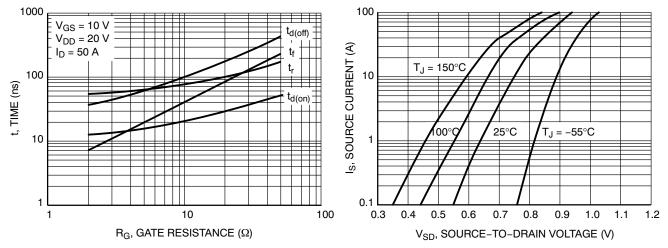


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

Figure 10. Diode Forward Voltage vs. Current

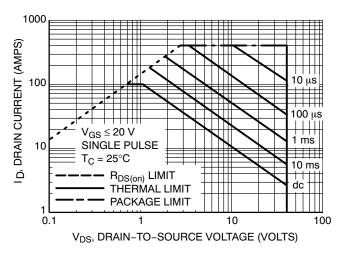


Figure 11. Maximum Rated Forward Biased Safe Operating Area

TYPICAL PERFORMANCE CURVES

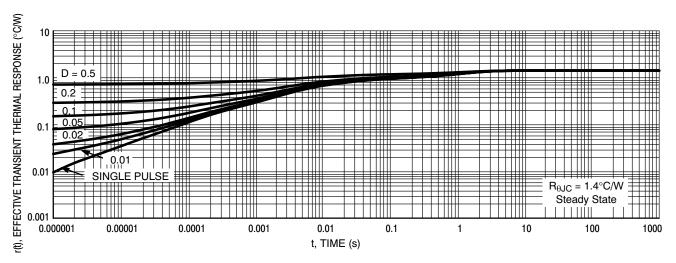
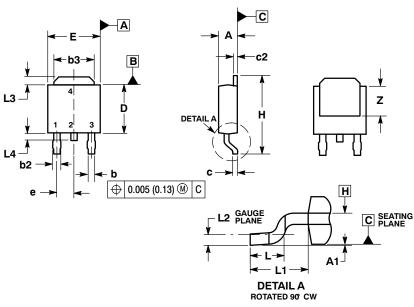


Figure 12. Thermal Response


ORDERING INFORMATION

Order Number	Package	Shipping [†]
NVD5890NT4G	DPAK (Pb-Free)	2500/Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

DPAK CASE 369C ISSUE D


NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME 1. DIMENSIONING AND TOLERANGING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: INCHES. 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DI-

- MENSIONS b3, L3 and Z.
 DIMENSIONS b AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE.
 5. DIMENSIONS D AND E ARE DETERMINED AT THE
- OUTERMOST EXTREMES OF THE PLASTIC BODY.
- 6. DATUMS A AND B ARE DETERMINED AT DATUM

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.086	0.094	2.18	2.38
A1	0.000	0.005	0.00	0.13
b	0.025	0.035	0.63	0.89
b2	0.030	0.045	0.76	1.14
b3	0.180	0.215	4.57	5.46
С	0.018	0.024	0.46	0.61
c2	0.018	0.024	0.46	0.61
D	0.235	0.245	5.97	6.22
E	0.250	0.265	6.35	6.73
е	0.090	BSC	2.29 BSC	
Н	0.370	0.410	9.40	10.41
L	0.055	0.070	1.40	1.78
L1	0.108	REF	2.74 REF	
L2	0.020	0.020 BSC		BSC
L3	0.035	0.050	0.89	1.27
L4		0.040		1.01
Z	0.155		3.93	

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and 📖 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. arising out of the application or use of any product or circuit, and specification scan and do vary in different applications and actual performance may vary over time. All operating parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative