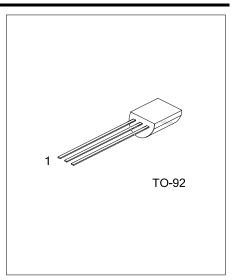
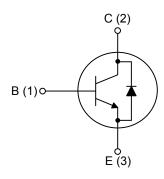
MJE13003D-P

Preliminary

NPN SILICON TRANSISTOR

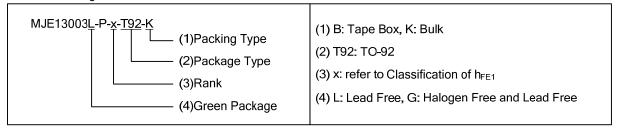

HIGH VOLTAGE FAST-SWITCHING NPN POWER TRANSISTOR

■ DESCRIPTION

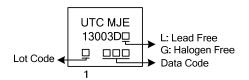

The UTC **MJE13003D-P** is a NPN Power Transistor. It is intended to be used in applications requiring medium voltage capability and high switching speeds.

■ FEATURES

- * Fast-Switching And High Voltage Capability
- * Dynamic Parameters With Low Spread
- * High Reliability
- * Integrated Antiparallel Collector-Emitter Diode


■ INTERNAL SCHEMATIC DIAGRAM

ORDERING INFORMATION


Ordering	Dookogo	Pin Assignment			Doolsing		
Lead Free	Halogen Free	Package	1	2	3	Packing	
MJE13003DL-P-x-T92-B	MJE13003DG-P-x-T92-B	TO-92	E	С	В	Tape Box	
MJE13003DL-P-x-T92-K	MJE13003DG-P-x-T92-K	TO-92	E	С	В	Bulk	

Note: Pin Assignment: C: Collector B: Base E: Emitter

www.unisonic.com.tw 1 of 5

■ MARKING

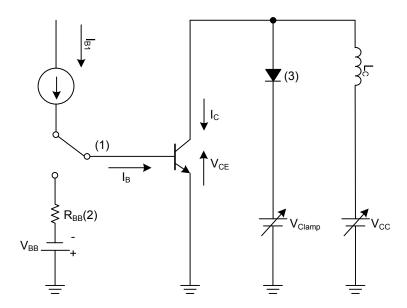
■ ABSOLUTE MAXIMUM RATINGS (T_A=25°C, unless otherwise specified)

PARAMETER	SYMBOL	RATINGS	UNIT
Collector- Emitter Voltage (V _{BE} =0)	V_{CES}	700	V
Collector-Emitter Voltage (I _B =0)	V_{CEO}	400	V
Emitter-Base Voltage (I_C =0, I_B =0.75A, t_P <10 μ S)	V_{EBO}	9	V
Collector Current	Ic	1.5	Α
Collector Peak Current (t _P <5ms)	I _{CM}	3	Α
Base Current	I _B	0.75	Α
Base Peak Current (t _P <5ms)	I _{BM}	1.5	Α
T _A =25°C	0	1.1	W
Power Dissipation $T_C=25^{\circ}C$	P _D	1.5	W
Junction Temperature	TJ	150	°C
Storage Temperature	T _{STG}	-55 ~ + 150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ ELECTRICAL CHARACTERISTICS (T_C=25°C, unless otherwise specified)

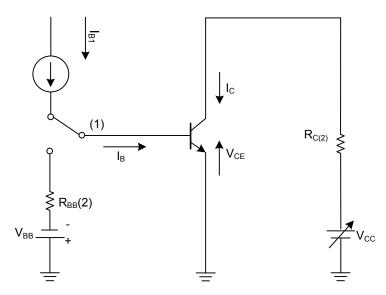
PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Emitter-Base Breakdown Voltage		BV_{EBO}	I _E =10mA, I _C =0	9		18	V
Collector-Emitter Sustaining Voltage (Note)		$V_{CEO(SUS)}$	I _C =10mA, I _B =0	450			V
Collector Cut-Off Current		I _{CES}	V _{CE} =700V,V _{BE} =0			1	mA
			I _C =0.5 A, I _B =0.1 A			0.5	V
Collector-Emitter Saturation	on Voltage (Note)	- (- /	I _C =1 A, I _B =0.25 A			1	V
			I _C =1.5 A, I _B =0.5 A			3	V
Base-Emitter Saturation Voltage (Note)		V _{BE(SAT)}	I _C =0.5 A, I _B =0.1 A			1	V
			I _C =1 A, I _B =0.25 A			1.2	V
DC Current Gain		h _{FE1}	I _C =0.4A, V _{CE} =5 V	14		57	
		h _{FE2}	I _C =1 A, V _{CE} =5 V	5		30	
Resistive Load	Rise Time	t_R	V _{CC} =125 V, I _C =1 A,			1	μs
	Storage Time	ts	I _{B1} =0.2 A, I _{B2} =-0.2 A			4	μs
	Fall Time	t_{F}	t _P =25µs			0.7	μs
Inductive Load Storage Time		ĪΩ	I _C =1 A, I _{B1} =0.2 A,V _{BE} =-5 V,		0.0		
			L=50mH, V _{CLAMP} =300V		8.0		μs
Diode Forward Voltage		V_{F}	I _F =0.5 A			1.5	V


Note: Pulse Test: Pulse duration≤300µs, Duty cycle≤2 %

■ CLASSIFICATION OF h_{FE1}

RANK	Α	В	С	D	E	F	G	Н
RANGE	14 ~ 22	21 ~ 27	26 ~ 32	31 ~ 37	36 ~ 42	41 ~ 47	46 ~ 52	51 ~ 57

TEST CIRCURTS


Inductive Load Switching Test Circuit

Notes: 1. Fast Electronic Switch

- 2. Non-Inductive Resistor
- 3. Fast Recovery Rectifier

Resistive Load Switching Test Circuit

- Notes: 1. Fast Electronic Switch
 - 2. Non-Inductive Resistor

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

