MORNSUN® # A_XT-1WR2 Series 1W, FIXED INPUT, ISOLATED & UNREGULATED DUAL OUTPUT ## **Patent Protected RoHS** # **PART NUMBER SYSTEM** A0505XT-1WR2 #### **FEATURES** - •Ultra-Miniature SMD package - ●1500VDC isolation - •Operating temperature range: -40°C ~+105°C - •Efficiency up to 82% - Internal SMD construction - No external component required - Industry standard pinout ### **APPLICATIONS** The A_XT-1WR2 Series are designed for application where isolated output is required from a distributed power system. These products apply to where: - 1) Input voltage rang :±10%Vin; - 2) 1500 VDC input and output isolation; - 3) Regulated and low ripple noise is not required, Such as: digital circuit, low frequency analog circuit, and relay drive circuit. | SELECTION | GUIDE | | | | | | | | | | |--------------|--------------------|-------------------|---|------|---------------------|--------------------|------------------------------|-----------|------|------| | Model | Input Voltage(VDC) | Output
Voltage | Output Current Input Current (mA) (mA,Typ.) | | Reflected
Ripple | Max.
Capacitive | Efficiency (%)
@Max. Load | | | | | | Nominal
(Range) | (VDC) | Max. | Min. | @Max.
Load | @No
Load | Current
(mA,Typ.) | Load (µF) | Min. | Тур. | | A0305XT-1WR2 | | ±5 | ±100 | ±10 | 388 | 25 | | | 74 | 78 | | A0312XT-1WR2 | 3.3
(2.97-3.63) | ±12 | ±42 | ±5 | 379 | | | | 76 | 80 | | A0315XT-1WR2 | (2.0. 0.00) | ±15 | ±33 | ±3 | 379 | 1 | | - | 76 | 80 | | A0505XT-1WR2 | | ±5 | ±100 | ±10 | 250 | | | 15 100 | 76 | 80 | | A0509XT-1WR2 | | ±9 | ±56 | ±6 | 250 | 1 | | | 76 | 80 | | A0512XT-1WR2 | 5
(4.5-5.5) | ±12 | ±42 | ±5 | 247 | 20 | | | 77 | 81 | | A0515XT-1WR2 | (| ±15 | ±33 | ±3 | 247 | | | | 77 | 81 | | A0524XT-1WR2 | | ±24 | ±21 | ±2 | 247 | | | | 77 | 81 | | A1205XT-1WR2 | | ±5 | ±100 | ±10 | 104 | 15 | 15 | | 76 | 80 | | A1209XT-1WR2 | | ±9 | ±56 | ±6 | 104 | | | | 76 | 80 | | A1212XT-1WR2 | 12
(10.8-13.2) | ±12 | ±42 | ±5 | 103 | 15 | | | 77 | 81 | | A1215XT-1WR2 | (10.0 10.2) | ±15 | ±33 | ±3 | 103 | | | _ | 77 | 81 | | A1224XT-1WR2 | | ±24 | ±21 | ±2 | 103 | | | | 77 | 81 | | A2405XT-1WR2 | | ±5 | ±100 | ±10 | 51 | 7 | | | 78 | 82 | | A2409XT-1WR2 | | ±9 | ±56 | ±6 | 51 | | | | 78 | 82 | | A2412XT-1WR2 | 24
(21.6-26.4) | ±12 | ±42 | ±5 | 51 | | | | 78 | 82 | | A2415XT-1WR2 | (21.0 20.4) | ±15 | ±33 | ±3 | 51 | | | | | 82 | | A2424XT-1WR2 | | ±24 | ±21 | ±2 | 51 | | | | 78 | 82 | | INPUT SPECIFICATI | ONS | | | | | | |--------------------------------------|-----------------|------|-----------|------|------|--| | Item | Test Conditions | Min. | Тур. | Max. | Unit | | | | 3.3VDC Input | -0.7 | | 5 | VDC | | | Input Surge Voltage | 5VDC Input | -0.7 | | 9 | | | | Input Surge Voltage
(1 sec. max.) | 12VDC Input | -0.7 | | 18 | | | | | 24VDC Input | -0.7 | | 30 | | | | Input Filter | | | Capacitor | | | | | OUTPUT SPECIFICAT | IONS | | | | | | | | | |-------------------------------------|----------------------------------|------------------------------------|---------------------|----------------|------------------------------|-------|--|--|--| | Item | Test Conditions | Test Conditions | | Тур. | Max. | Unit | | | | | Output Voltage Accuracy | | | | | See tolerance envelope curve | | | | | | Line Regulation | For Vin change of ±1° | For Vin change of ±1% | | | ±1.2 | % | | | | | | 10% to 100% load | 5VDC output | | 12 | | % | | | | | | | 9VDC output | | 8 | | | | | | | Load Regulation | | 12VDC output | | 7 | | | | | | | | | 15VDC output | | 6 | | | | | | | | | 24VDC output | | 5 | | | | | | | Temperature coefficient | 100% load | ' | | | ±0.03 | %/°C | | | | | Ripple & Noise* | 20MHz Bandwidth | 20MHz Bandwidth | | 60 | | mVp-p | | | | | Short Circuit Protection | | | | Continuous, au | itomatic recovery | | | | | | Note:* Ripple and noise tested with | n "parallel cable" method. See o | letailed operation instructions at | DC-DC Application N | otes. | | | | | | | COMMON SPECIFICATIONS | | | | | | | | |-----------------------|--|------|------------|--------------|---------|--|--| | Item | Test Conditions | Min. | Тур. | Max. | Unit | | | | Isolation Voltage | Input-Output, tested for 1 minute and leakage current less than 1 mA | 1500 | | | VDC | | | | Isolation Resistance | Input-Output, test at 500VDC | 1000 | - - | - | МΩ | | | | Isolation Capacitance | Input-Output,,100KHz/0.1V | | 20 | \ | pF | | | | Switching Frequency | Full load, nominal input | 4 | 100 | 300 | KHz | | | | MTBF | MIL-HDFK-217F@25℃ | 3500 | |) | K hours | | | | Case Material | | | Epoxy Res | in (UL94-V0) | | | | | Weight | | | 1.8 | | g | | | | Item | Test Conditions | Min. | Тур. | Max. | Unit | |-----------------------|---------------------------------------|------|----------|------------|------| | Storage Humidity | Non condensing | | | 95 | % | | Operating Temperature | Power derating (≥100°C, see Figure 2) | -40 | | 105 | | | Storage Temperature | | -55 | | 125 | °C | | Case Temperature rise | Ta=25°C | | 25 | | | | Lead Temperature | 1.5mm from case for 10 seconds | | | 300 | | | Cooling | | | Free air | convection | | | EMC SPECIFICATIONS | | | | | | | |--------------------|--|-----|-----------------|-------------------------|------------------------|--| | EMI | | CE | CISPR22/EN55022 | CLASS B(Recommended Cir | cuit Refer to Figure1) | | | EMI | | RE | CISPR22/EN55022 | CLASS B(Recommended Cir | cuit Refer to Figure1) | | | EMS | | ESD | IEC/EN61000-4-2 | Contact ±6KV | perf. Criteria B | | # **EMC RECOMMENDED CIRCUIT** EMI Typical Recommended Circuit (CLASS B): Recommended typical circuit parameters: | | Vin(V) | 3.3/5/12/24 | | |----------|--------|-------------|--| | FMI | C0 | 4.7µF /50V | | | □ □ IVII | LDM | 6.8µH | | ## **EMI TEST WAVEFORM (RECOMMENDED CIRCUIT FINGURE 1)** A0505XT-1WR2 CE(Class B, Positive line) A1205XT-1WR2 CE(Class B, Positive line) A0505XT-1WR2 CE(Class B, Negative line) A1205XT-1WR2 CE(Class B, Negative line) ## PRODUCT TYPICAL CURVE Tolerance Envelope Curve Efficiency VS Input Voltage curve Efficiency VS Input Voltage curve Temperature Derating Graph Efficiency VS Output Load curve (Vin=Vin-nominal) Efficiency VS Output Load curve Recommended reflow soldering profile refer to IPC/JEDEC J-STD-020D standard, our products recommended reflow soldering profile as follow: Note: The curve only applies to the hot air reflow soldering # **DIMENSIONS, RECOMMENDED FOOTPRINT & PACKAGING** ## **TEST CONFIGURATIONS** ## Input Reflected-Ripple Current Test Setup Input reflected-ripple current is measured with an inductor Lin and Capacitor Cin to simulate the source impedance . Lin(4.7µH) Cin(220 μ F, ESR < 1.0 Ω at 100 KHz) #### **DESIGN CONSIDERATIONS** #### 1) Requirement for output load To ensure this module operate efficiently and reliably, the minimum output load could not be less than 10% of the full load. If the actual output power is very small, please connect a resistor to the output in parallel to increase the load, or use our company's products with a lower rated output #### 2) Overload Protection Under normal operating conditions, the output circuit of these products have not overload protection. The simplest method is to add a breaker circuit in the circuit. #### 3) Recommended circuit If you want to further decrease the input/output ripple, an capacitor filtering network may be connected to the input and output ends of the DC/DC converter, refer to Figure 3. It should also be noted that the capacitance of the capacitor must be proper. If the capacitance is too large, a startup problem might arise. For ensuring every channel of output can provide a safe and reliable operation, the recommended capacitance of the capacitor refer to Table 1. EXTERNAL CAPACITOR TABLE (Table 1) | Vin | Cin | Dual | Cout | |-------|---------------|---------------|------| | (VDC) | (μ F) | Vout
(VDC) | (µF) | | 3.3 | 4.7 | ±5 | 4.7 | | 3.3 | 4.7 | ΞÜ | 4.7 | | 5 | 4.7 | ±9 | 2.2 | | 12 | 2.2 | ±12 | 1 | | 24 | 1 | ±15 | 1 | | | | ±24 | 0.47 | It's not recommended to connect any external capacitor in the application field with less than 0.5 watt output. ### 4) Output Voltage Regulation and Over-voltage Protection Circuit The simplest device for output voltage regulation, over-voltage and over-current protection is a linear regulator with overheat protection which is connected to the input or output in series (Figure 4)and an capacitor filtering network the recommended capacitance of the capacitor refer to Table 1, linear regulator based on the actual voltage and current to make a reasonable selection. #### 5) It is not recommended to increase the output power capability by connecting two or more converters in parallel. The product is not hot-swappable #### Note: - 1. Operation under minimum load will not damage the converter; However, they may not meet all specifications. - 2. Max. Capacitive Load is tested at nominal input voltage and full load. - 3. Unless otherwise noted, All specifications are measured at Ta=25°C, humidity<75%, nominal input voltage and rated output load. - 4. In this datasheet, all test methods are based on our corporate standards. - 5. All characteristics are for listed models, and non-standard models may perform differently. Please contact our technical support for more detail. - 6. Please contact our technical support for any specific requirement. - 7. Specifications of this product are subject to changes without prior notice. ### MORNSUN Science & Technology Co.,Ltd. Address: No. 5, Kehui St. 1, Kehui development center, Science Ave., Guangzhou Science City, Luogang district, Guangzhou, P.R. China. Tel: 86-20-38601850 Fax:86-20-38601272 E-mail: info@mornsun.cn Http://www.mornsun-power.com