Hi-Rel PNP bipolar transistor 80 V - 5 A **Datasheet - production data** Figure 1. Internal schematic diagram #### **Features** | BV _{CEO} | 80 V | |----------------------------------|-----------------| | I _C (max) | 5 A | | H _{FE} at 10 V - 150 mA | > 70 | | Operating temperature range | -65°C to +200°C | - Hi-Rel PNP bipolar transistor - Linear gain characteristics - ESCC qualified - European preferred part list EPPL - Radiation level: lot specific total dose contact marketing for specified level #### **Description** The 2N5153HR is a silicon planar epitaxial PNP transistor in TO-39, TO-257 and SMD.5 packages. It is specifically designed for aerospace Hi-Rel applications and ESCC qualified according to the 5204-002 specification. In case of conflict between this datasheet and ESCC detailed specification, the latter prevails. **Table 1. Device summary** | Device | Qualification system | Agency specification | Package | Other features | EPPL | |---------------|----------------------|----------------------|---------|--|------| | 2N5153RSHRG | ESCC | 5204/002 | SMD.5 | Emitter on Pin 1 - 100 krad: ESCC
LDR | Yes | | 2N5153SHRG | ESCC | 5204/002 | SMD.5 | Emitter on Pin 1 | Yes | | 2N5153RHRx | ESCC | 5204/002 | TO-39 | 100 krad: ESCC LDR | - | | 2N5153HRx | ESCC | 5204/002 | TO-39 | - | - | | 2N5153RESYHRx | ESCC | 5204/002 | TO-257 | 100 krad : ESCC LDR | - | | 2N5153ESYHRx | ESCC | 5204/002 | TO-257 | - | - | Contents 2N5153HR ## **Contents** | 1 | Elec | trical ratings | . 3 | |---|------|-------------------------------------|-----| | 2 | Elec | trical characteristics | . 4 | | | 2.1 | Electrical characteristics (curves) | . 5 | | | 2.2 | Test circuit | . 6 | | 3 | Radi | iation hardness assurance | . 7 | | 4 | Pack | kage mechanical data | . 9 | | | 4.1 | TO-257 | . 9 | | | 4.2 | TO-39 | .11 | | | 4.3 | SMD.5 | 12 | | 5 | Orde | er codes | 14 | | 6 | Ship | pping details | 15 | | | 6.1 | Date code | 15 | | | 6.2 | Documentation | 15 | | 7 | Revi | ision history | 16 | 2N5153HR Electrical ratings # 1 Electrical ratings Table 2. Absolute maximum ratings | Symbol | Parameter | Value | Unit | |------------------|--|----------------------------|------------------| | V _{CBO} | Collector-base voltage (I _E = 0) | -100 | V | | V _{CEO} | Collector-emitter voltage (I _B = 0) | -80 | V | | V _{EBO} | Emitter-base voltage (I _C = 0) | -5.5 | V | | I _C | Collector current | -5 | Α | | P _{TOT} | Total dissipation at $T_{amb} \le 25~^{\circ}C$ for TO-39 for TO-257 $T_{C} \le 25~^{\circ}C$ for TO-39 for TO-257 for SMD.5 | 1
3.3
10
35
35 | W
W
W
W | | TSTG | Storage temperature | -65 to 200 | °C | | TJ | Max. operating junction temperature | 200 | °C | Table 3. Thermal data for through-hole packages | Symbol | Parameter | TO-39 | TO-257 | Unit | |-------------------|---|-------|--------|------| | R _{thJC} | Thermal resistance junction-case max | 17.5 | 5 | °C/W | | R_{thJA} | Thermal resistance junction-ambient max | 175 | 53 | °C/W | Table 4. Thermal data for SMD package | Symbol | Parameter | SMD.5 Uni | it | |-------------------|--------------------------------------|-----------|----| | R _{thJC} | Thermal resistance junction-case max | 5 °C/V | W | Electrical characteristics 2N5153HR ## 2 Electrical characteristics T_{case} = 25 °C unless otherwise specified **Table 5. Electrical characteristics** | Symbol | Parameter | Test conditions | Min. | Тур. | Max. | Unit | |-------------------------------------|--|---|----------------------|------|---------------|----------| | I _{CES} | Collector cut-off
current (I _E = 0) | V _{CB} = - 60 V
V _{CB} = - 60 V T _{amb} = 150 °C | | | -1
-10 | μA
μA | | I _{EBO} | Emitter cut-off current (I _C = 0) | V _{EB} = - 4 V
V _{EB} = - 5.5 V | | | -1
-1 | μA
mA | | I _{CEO} | Collector cut-off current (I _B = 0) | V _{CE} = - 40 V | | | -50 | μΑ | | V _{(BR)CEO} (1) | Collector-emitter breakdown voltage (I _B = 0) | I _C = - 100 mA | -80 | | | > | | V _{CE(sat)} (1) | Collector-emitter saturation voltage | I _C = - 5 A I _B = - 0.5 A | | | -1.5 | V | | V _{BE(sat)} ⁽¹⁾ | Base-emitter saturation voltage | $I_C = -2.5 \text{ A}$ $I_B = -0.25 \text{ A}$ $I_C = -5 \text{ A}$ $I_B = -0.5 \text{ A}$ | | | -1.45
-2.2 | V
V | | h _{FE} ⁽¹⁾ | DC current gain | $\begin{split} I_{C} &= -50 \text{ mA} & V_{CE} &= -5 \text{ V} \\ I_{C} &= -2.5 \text{ A} & V_{CE} &= -5 \text{ V} \\ I_{C} &= -5 \text{ A} & V_{CE} &= -5 \text{ V} \\ I_{C} &= -2.5 \text{ A} & V_{CE} &= -5 \text{ V} \\ T_{amb} &= -55 \text{ °C} \end{split}$ | 50
70
40
35 | | 200 | | | h _{fe} | AC forward current transfer ratio | $V_{CE} = -5 V$ $I_{C} = -500 \text{ mA}$ $f = 20 \text{ MHz}$ | 3.5 | | | | | C _{OBO} | Output capacitance | I _E = 0 V _{CB} = - 10 V
f = 1 MHz | | | 250 | pF | | t _{on} | Turn-on time | $V_{CC} = -30 \text{ V}$ $V_{BB} = -4 \text{ V}$
$V_{in} \approx -51 \text{ V}$ $I_{C} = 5 \text{ A}$
$I_{B1} = -I_{B2} = -0.5 \text{ A}$ | | | 0.5 | μs | | t _{off} | Turn-off time | $V_{CC} = -30 \text{ V}$ $V_{BB} = -4 \text{ V}$
$V_{in} \approx -51 \text{ V}$ $I_{C} = -5 \text{ A}$
$I_{B1} = -I_{B2} = -0.5 \text{ A}$ | | | 1.3 | μs | ^{1.} Pulsed duration = 300 μ s, duty cycle £ 1.5% lc (A) #### 2.1 **Electrical characteristics (curves)** Ic (A) Figure 2. $h_{FE} @V_{CE} = 5 V$ Figure 3. V_{CEsat} @ h_{FE} = 10 1E3 0.1 0.01 lc (A) Figure 4. V_{BEsat} @ h_{FE} = 10 Figure 5. $V_{BEON} @ V_{CE} = 5 V$ 1.2 1.1 1.05 1.05 0.95 0.9 0.95 0.9 ∑ 0.8 0.75 0.85 8.0 0.7 0.75 0.65 0.7 0.65 0.55 0.6 0.5 0.55 0.5 0.45 Electrical characteristics 2N5153HR ### 2.2 Test circuit Figure 6. Resistive load switching test circuit - 1. Fast electronic switch - 2. Non-inductive resistor #### 3 Radiation hardness assurance The products guaranteed in radiation within the ESCC system fully comply with the ESCC 5201/002 and ESCC 22900 specifications. #### **ESCC** radiation assurance Each product lot is tested according to the ESCC basic specification 22900, with a minimum of 11 samples per diffusion lot and 5 samples per wafer, one sample being kept as unirradiated sample, all of them being fully compliant with the applicable ESCC generic and/or detailed specification. ST goes beyond the ESCC specification by performing the following procedure: - Test of 11 pieces by wafer, 5 biased at least 80% of V_{(BR)CEO}, 5 unbiased and 1 kept for reference - Irradiation at 0.1 rad (Si)/s - Acceptance criteria of each individual wafer if as 100 krad guaranteed if all 10 samples comply with the post radiation electrical characteristics provided in Table 6 - Delivery together with the parts of the radiation verification test (RVT) report of the particular wafer used to manufacture the products. This RVT includes the value of each parameter at 30, 50, 70 and 100 krad (Si) and after 24 hour annealing at room temperature and after an additional 168 hour annealing at 100°C. Table 6. ESCC 5201/002 post radiation electrical characteristics | Symbol | Parameter | Test con | ditions | Min. | Тур. | Max. | Unit | |-----------------------------------|--|--|---|----------------------|------|---------------|----------| | I _{CES} | Collector cut-off current (I _E = 0) | V _{CB} = - 60 V | | | | -1 | μΑ | | I _{EBO} | Emitter cut-off current (I _C = 0) | V _{EB} = - 4 V
V _{EB} = - 5.5 V | | | | -1
-1 | μA
mA | | I _{CEO} | Collector cut-off current (I _B = 0) | V _{CE} = - 40 V | | | | -50 | μΑ | | V _{(BR)CEO} (1) | Collector-emitter
breakdown voltage
(I _B = 0) | I _C = - 100 mA | | -80 | | | ٧ | | V _{CE(sat)} (1) | Collector-emitter saturation voltage | I _C = - 5 A | I _B = - 0.5 A | | | -1.5 | V | | V _{BE(sat)} (1) | Base-emitter saturation voltage | I _C = - 2.5 A
I _C = - 5 A | $I_B = -0.25 A$
$I_B = -0.5 A$ | | | -1.45
-2.2 | V
V | | [h _{FE}] ⁽¹⁾ | Post irradiation gain calculation ⁽²⁾ | - | $V_{CE} = -5 V$ $V_{CE} = -5 V$ $V_{CE} = -5 V$ | [25]
[35]
[20] | | 200 | | ^{1.} Pulsed duration = 300 μ s, duty cycle $\leq 1.5\%$ The post-irradiation gain calculation of [h_{FE}], made using h_{FE} measurements from prior to and on completion of irradiation testing and after each annealing step if any, shall be as specified in MILSTD-750 method 1019 ## 4 Package mechanical data In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark. #### 4.1 TO-257 D1 A A Significant Signific Figure 7. TO-257 mechanical drawing Figure 8. TO-257 mechanical data | Dim. | | mm | | |--------|-------|------|-------| | Dilli. | Min. | Тур. | Max. | | А | 4.83 | | 5.08 | | A1 | 0.89 | | 1.14 | | A2 | | 3.05 | | | b | 0.64 | | 1.02 | | b1 | 0.64 | 0.76 | 0.89 | | D | 16.38 | | 16.89 | | D1 | 10.41 | | 10.92 | | D2 | | | 0.97 | | е | | 2.54 | | | E | 10.41 | | 10.67 | | L | 12.70 | | 19.05 | | L1 | 13.39 | | 13.64 | | Р | 3.56 | | 3.81 | ## 4.2 TO-39 Figure 9. TO-39 drawing Table 7. TO-39 mechanical data | Dim. | mm | | | | | | |------|------|-------|-------|--|--|--| | | Min. | Тур. | Max. | | | | | А | | 12.70 | 14.20 | | | | | В | | 0.40 | 0.49 | | | | | С | | 0.58 | 0.74 | | | | | D | | 6.00 | 6.40 | | | | | E | | 8.15 | 8.25 | | | | | F | - | 9.10 | 9.20 | | | | | G | | 4.93 | 5.23 | | | | | Н | | 0.85 | 0.95 | | | | | I | | 0.75 | 0.85 | | | | | L | | 42° | 48° | | | | #### 4.3 SMD.5 Figure 10. TSMD.5 drawing 12/17 DocID15386 Rev 5 Table 8. SMD.5 mechanical data | Dim. | | mm | | Inch | | | |--------|-------|-------|-------|-------|-------|-------| | Dilli. | Min. | Тур. | Max. | Min. | Тур. | Max. | | Α | 2.84 | 3.00 | 3.15 | 0.112 | 0.118 | 0.124 | | A1 | 0.25 | 0.38 | 0.51 | 0.010 | 0.015 | 0.020 | | b | 7.13 | 7.26 | 7.39 | 0.281 | 0.286 | 0.291 | | b1 | 5.58 | 5.72 | 5.84 | 0.220 | 0.225 | 0.230 | | b2 | 2.28 | 2.41 | 2.54 | 0.090 | 0.095 | 0.100 | | | 2.92 | 3.05 | 3.18 | 0.115 | 0.120 | 0.125 | | D | 10.03 | 10.16 | 10.28 | 0.935 | 0.400 | 0.405 | | D1 | 0.76 | | | 0.030 | | 0.685 | | E | 7.39 | 7.52 | 7.64 | 0.291 | 0.296 | 0.301 | | е | | 1.91 | | | 0.075 | | ### 5 Order codes Table 9. Order codes | CPN | Agency specification | EPPL | Quality level | Other features | Packag
e | Lead finish | Marking ⁽¹⁾ | Packing | |---------------|----------------------|------|------------------------|---|-------------|-------------|------------------------|------------| | 2N5153S1 | - | - | Engineering model ESCC | Emitter on Pin 1 | SMD.5 | Gold | 2N5153S1 | Strip Pack | | 2N5153ESY1 | - | | Engineering model ESCC | - | TO-257 | Gold | 2N5153ESY1 + BeO | Strip Pack | | 2N5153RSHRG | 5204/002/06R | Yes | ESCC | Emitter on Pin 1 - 100 krad
: ESCC LDR | SMD.5 | Gold | 520400206R | Strip Pack | | 2N5153SHRG | 5204/002/06 | Yes | ESCC | Emitter on Pin 1 | SMD.5 | Gold | 520400206 | Strip Pack | | 2N5153RHRG | 5204/002/01R | - | ESCC | 100 krad : ESCC LDR | TO-39 | Gold | 520400201R | Strip Pack | | 2N5153RHRT | 5204/002/02R | - | ESCC | 100 krad : ESCC LDR | TO-39 | Solder Dip | 520400202R | Strip Pack | | 2N5153HRG | 5204/002/01 | - | ESCC | - | TO-39 | Gold | 520400201 | Strip Pack | | 2N5153HRT | 5204/002/02 | - | ESCC | - | TO-39 | Solder Dip | 520400202 | Strip Pack | | 2N5153RESYHRG | 5204/002/04R | - | ESCC | 100 krad : ESCC LDR | TO-257 | Gold | 520400204R + BeO | Strip Pack | | 2N5153RESYHRT | 5204/002/05R | - | ESCC | 100 krad : ESCC LDR | TO-257 | Solder Dip | 520400205R + BeO | Strip Pack | | 2N5153ESYHRG | 5204/002/04 | - | ESCC | - | TO-257 | Gold | 520400204 + BeO | Strip Pack | | 2N5153ESYHRT | 5204/002/05 | - | ESCC | - | TO-257 | Solder Dip | 520400205 + BeO | Strip Pack | ^{1.} Specific marking only. The full marking includes in addition: For the Engineering Models: ST logo, date code; country of origin (FR). For ESCC flight parts: ST logo, date code, country of origin (FR), ESA logo, serial number of the part within the assembly lot. Contact ST sales office for information about the specific conditions for: - Products in die form - Tape and reel packing 2N5153HR Shipping details ## 6 Shipping details #### 6.1 Date code Date code xyywwz is structured as below table: Table 10. Date code | | | x | уу | ww | z | |--|----------------|---|-----------------------------|-------------|--------------------------| | | EM
(ESCC) | 3 | last two digits of the year | week digits | lot index in the
week | | | ESCC
FLIGHT | - | | | | #### 6.2 Documentation Table 11. Documentation provided for each type of product | Quality level | Radiation level | Documentation | | |-------------------|-----------------|--|--| | Engineering model | - | - | | | ESCC Flight | - | Certificate of conformance | | | | 100 krad | Certificate of conformance | | | | 100 krad | 0.1 rad/s radiation verification test report | | Revision history 2N5153HR # 7 Revision history **Table 12. Document revision history** | Date | Revision | Changes | |-------------|----------|---| | 10-Dec-2008 | 1 | Initial release | | 08-Jan-2010 | 2 | Modified Table 1: Device summary | | 12-Sep-2012 | 3 | Added: Section 2.1: Electrical characteristics (curves) on page 5 | | 12-Dec-2013 | 4 | Updated Table 1: Device summary and Section 4: Package mechanical data. Added Section 3: Radiation hardness assurance, Section 5: Order codes and Section 6: Shipping details. | | 28-Mar-2014 | 5 | Updated <i>Table 1: Device summary</i> and <i>Table 9: Order codes</i> . Minor text changes. | #### Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST's terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2014 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com DocID15386 Rev 5