

2SJ557

DESCRIPTION

The 2SJ557 is a switching device which can be driven directly by a 4 V power source.

The 2SJ557 features a low on-state resistance and excellent switching characteristics, and is suitable for applications such as power switch of portable machine and so on.

FEATURES

- Can be driven by a 4 V power source
- Low on-state resistance

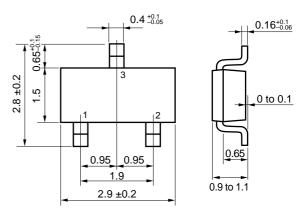
 $R_{DS(on)1} = 155 \text{ m}\Omega$ MAX. (Vgs = -10 V, ID = -1.0 A)

RDS(on)2 = 255 m Ω MAX. (VGS = -4.5 V, ID = -1.0 A)

 $R_{DS(on)3} = 290~m\Omega$ MAX. (Vgs = -4.0~V,~Ip = -1.0~A)

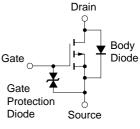
ORDERING INFORMATION

PART NUMBER	PACKAGE		
2SJ557	3-pin Mini Mold (Thin Type)		


ABSOLUTE MAXIMUM RATINGS (TA = 25°C)

Drain to Source Voltage	VDSS	-30	V
Gate to Source Voltage	Vgss	-20 / +5	V
Drain Current (DC)	ID(DC)	±2.5	Α
Drain Current (pulse) Note1	ID(pulse)	±10	Α
Total Power Dissipation	P _{T1}	0.2	W
Total Power Dissipation Note2	P _{T2}	1.25	W
Channel Temperature	Tch	150	°C
Storage Temperature	T_{stg}	-55 to +150	°C

Notes 1. PW \leq 10 μ s, Duty Cycle \leq 1 %


2. Mounted on FR4 Board, $t \le 5$ sec.

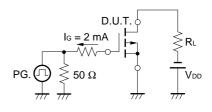
PACKAGE DRAWING (Unit:mm)

- 1 : Gate
- 2 : Source
- 3 : Drain

EQUIVALENT CIRCUIT

Marking: XB

2SJ557


ELECTRICAL CHARACTERISTICS (TA = 25 °C)

CHARACTERISTICS	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Drain Cut-off Current	Ipss	V _{DS} = -30 V, V _{GS} = 0 V			-10	μΑ
Gate Leakage Current	Igss	Vgs = ±16 V, Vps = 0 V			±10	μΑ
Gate Cut-off Voltage	V _{GS(off)}	$V_{DS} = -10 \text{ V}, I_{D} = -1 \text{ mA}$	-1.0	-1.7	-2.5	٧
Forward Transfer Admittance	y fs	$V_{DS} = -10 \text{ V}, I_{D} = -1.5 \text{ A}$	1	2.5		S
Drain to Source On-state Resistance	RDS(on)1	Vgs = -10 V, ID = -1.0 A		114	155	mΩ
	RDS(on)2	$V_{GS} = -4.5 \text{ V}, I_{D} = -1.0 \text{ A}$		178	255	mΩ
	RDS(on)3	$V_{GS} = -4.0 \text{ V}, I_{D} = -1.0 \text{ A}$		212	290	mΩ
Input Capacitance	Ciss	V _{DS} = −10 V		312		pF
Output Capacitance	Coss	V _G s = 0 V		117		pF
Reverse Transfer Capacitance	Crss	f = 1 MHz		56		pF
Turn-on Delay Time	td(on)	V _{DD} = -10 V		12		ns
Rise Time	tr	I _D = -1.0 A		7		ns
Turn-off Delay Time	td(off)	$V_{GS(on)} = -10 \text{ V}$		133		ns
Fall Time	t f	$R_G = 10 \Omega$		85		ns
Total Gate Charge	Q _G	V _{DD} = -10 V		2.8		nC
Gate to Source Charge	Qgs	ID = -2.5 A		1.0		nC
Gate to Drain Charge	Q _{GD}	Vgs = -4.0 V		1.2		nC
Diode Forward Voltage	VF(S-D)	IF = 2.5 A, VGS = 0 V		0.84		V
Reverse Recovery Time	trr	IF = 2.5 A, VGS = 0 V		28		ns
Reverse Recovery Charge	Qrr	$di/dt = 50 A/\mu s$		7.8		nC

TEST CIRCUIT 1 SWITCHING TIME

PG. $\bigcap_{R_G} R_G = 10 \ \Omega$ $V_{GS} \bigvee_{Wave \ Form} V_{GS} \bigvee_{Wave \$

TEST CIRCUIT 2 GATE CHARGE

