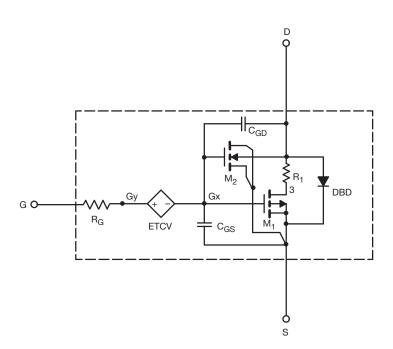


SI2323CDS


DESCRIPTION

The attached SPICE model describes the typical electrical characteristics of the p-channel vertical DMOS. The subcircuit model is extracted and optimized over the - 55 °C to + 125 °C temperature ranges under the pulsed 0 V to 5 V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage. A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched $C_{\rm gd}$ model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

SUBCIRCUIT MODEL SCHEMATIC

CHARACTERISTICS

- P-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS
- Apply for both Linear and Switching Application
- Accurate over the 55 °C to + 125 °C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

Note

This document is intended as a SPICE modeling guideline and does not constitute a commercial product datasheet. Designers should refer to the appropriate datasheet of the same number for guaranteed specification limits.

SI2323CDS

SPECIFICATIONS T _J = 25 °C, unless otherwise noted					
PARAMETER	SYMBOL	TEST CONDITIONS	SIMULATED DATA	MEASURED DATA	UNIT
Static					
Gate-Source Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	0.75	-	V
Drain-Source On-State Resistance ^a	R _{DS(on)}	V _{GS} = - 4.5 V, I _D = - 4.6 A	0.032	0.032	Ω
		V _{GS} = - 2.5 V, I _D = - 4.1 A	0.039	0.041	
Forward Transconductance ^a	9 _{fs}	V _{DS} = - 5 V, I _D = - 4.6 A	18	20	S
Diode Forward Voltage	V _{SD}	I _S = - 3.7 A	- 0.75	- 0.80	V
Dynamic ^b					
Input Capacitance	C _{iss}	V _{DS} = - 10 V, V _{GS} = 0 V, f = 1 MHz	1080	1090	pF
Output Capacitance	C _{oss}		157	155	
Reverse Transfer Capacitance	C _{rss}		136	135	
Total Gate Charge	Qg	$V_{DS} = -10 \text{ V}, V_{GS} = -4.5 \text{ V}, I_D = -4.6 \text{ A}$	12	16	nC
		V _{DS} = - 10 V, V _{GS} = - 2.5 V, I _D = - 4.6 A	7.7	9	
Gate-Source Charge	Q_{gs}		2.5	2.5	
Gate-Drain Charge	Q _{gd}		3.2	3.2	

Notes

- a. Pulse test; pulse width $\leq 300~\mu s,$ duty cycle $\leq 2~\%.$
- b. Guaranteed by design, not subject to production testing.