

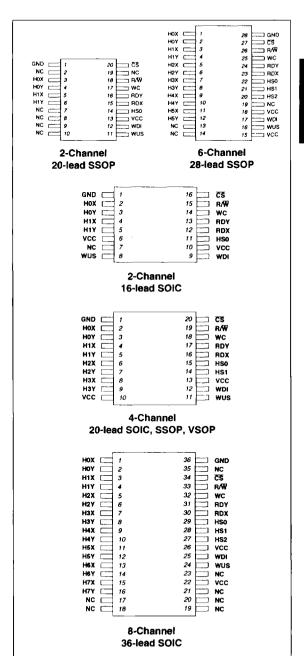
VM7200

2, 4, 6 OR 8-CHANNEL, 5-VOLT, THIN-FILM HEAD, READ/WRITE PREAMPLIFIER

950801

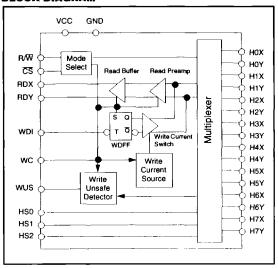
August, 1995

FEATURES


- High Performance
- Read Gain = 200 V/V Typical
- Input Noise = 0.75nV/√Hz Maximum
- Head Inductance Range = 0.2 10 μH
- Write Current Range 10 40 mA
- Input Capacitance = 23 pF Maximum
- Very Low Power Dissipation = 7.5 mW Typical in Sleep Mode
- Power Up/Down Data Protect Circuitry
- Reduced Write-to-Read Recovery Time
- Single Power Supply = 5 V ± 10%
- · Fault Detect Capability
- · Designed for Thin-Film Heads
- Write Unsafe Detection
- Optional Schottky Diode Isolated 400Ω Damping Resistor Available (patent pending)
- Available in 2, 4, 6 or 8-Channels

DESCRIPTION

The VM7200 is a high-performance, very low-power read/write preamplifier designed for use with external thin-film or MIG recording heads. This circuit will operate on a single 5-volt power supply and is ideally suited for use in battery powered disk drives.


The VM7200 provides write current and data protection circuitry, and low noise read functions for up to eight read/write heads. When deactivated, the device enters a *sleep mode* which reduces power dissipation to 7.5 mW. Data protection circuitry is provided to ensure that the write current source is totally disabled during power supply power up/power down conditions. Write-to-read recovery time is minimized by eliminating common mode output voltage swings when switching between modes.

The VM7200 is available in several different packages. Please consult VTC for package availability.

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Power Supply:
V _{CC} 0.3V to +7V
Write Current I _W 60mA
Input Voltages:
Digital Input Voltage V _{IN} 0.3V to (V _{CC} + 0.3)V
Head Port Voltage V _H 0.3V to (V _{CC} + 0.3)V
WUS Pin Voltage Range V _{WUS} 0.3V to +6V
Output Current:
RDX, RDY: I _O 10mA
WUS: I _{WUS} +12mA
Junction Temperature150°C
Storage Temperature T _{stg} 65° to 150°C
Thermal Characteristics, Θ_{JA} :
16-lead SOIC
20-lead SOIC 60°C/W
20-lead SSOP 110°C/W
20-lead VSOP 120°C/W
28-lead SSOP 100°C/W
36-lead SOIC 80°C/W

RECOMMENDED OPERATING CONDITIONS

Power Supply Voltage:	
V _{CC}	+5V ± 10%
Write Current (I _W)	10 to 40mA
Head inductance (L _H)	0.2 to 10µH
Junction Temperature (T _J)	°C to 125°C

CIRCUIT OPERATION

The VM7200 addresses up to eight 2-terminal, thin-film recording heads, providing switched write current in the write mode, or data amplification in the read mode. Head selection and mode control is determined by the head select lines, HS0, HS1, HS2 and mode control lines, $\overline{\text{CS}}$, $\overline{\text{R/W}}$ as shown in Tables 1 and 2. Internal resistor pullups, provided on the $\overline{\text{CS}}$ and $\overline{\text{R/W}}$ lines, will force the device into a non-write condition if either control line opens up. The part's operation over a wide range of inductive loads makes it suitable for non-thin-film two-terminal heads also.

Write Mode

In write mode, the VM7200 acts as a write current switch with the write unsafe (WUS) detection circuitry activated. Write current is toggled between the X and Y side of the selected head on each high to low transition on the Write Data Flip-Flop (WDFF) so that upon switching to the write mode, the write current flows into the "X" side of the head.

The write current magnitude is determined by an external resistor (RWC) connected between the WC pin and Ground. An internally generated reference voltage is present at the WC pin. The magnitude of the Write Current (0-PK, ± 8%) is:

$$I_W = K_W/R_{WC} = 50/R_{WC}$$

Power supply fault protection ensures data security on the disk by disabling the write current source during a power supply voltage fault or by supply power up/down conditions. Additionally, the write unsafe (WUS) detection circuitry will flag any of the conditions listed below, as a high level on the WUS line. Two negative transitions on the WDI pin, after the fault is corrected, is required to clear the WUS line.

- · No write current
- · WDI frequency too low
- · Read or sleep mode

Read Mode

In read mode, the VM7200 acts as a low noise differential amplifier for signals coming off the disk. The write current generator and write unsafe circuitry is deactivated. The RDX, RDY pins are emitter follower outputs and are in phase with "X" and "Y" head ports. These outputs should be AC coupled to the load. The RDX, RDY common mode output voltage is constant, minizing the transient between read and write mode, thereby, substantially reducing the recovery time in the Pulse Detector circuit connected to these outputs.

Sleep Mode

When \overline{CS} is high, initially all circuitry is shut down so that power dissipation is reduced to 7.5 mW in the **sleep mode**. Switching the \overline{CS} line low "wakes up" the chip and the device will enter the read or write mode, depending on the status of the $R\overline{W}$ line.

Diode Connected Damping Resistor (patent pending)

The VM7200 has damping resistors isolated by Schottky diodes. The diodes effectively remove the resistor from the circuit during the read mode, however during the write mode with the higher level input signal, the resistor provides damping for the write current waveform.

Input Structure:

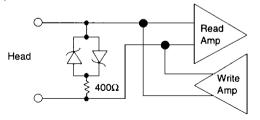


Table 11: Head Select

HS2	HS1	HS0	HEAD
0	0	0	0
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	6
1	1	1	7

Table 12: Mode Select

<u> </u>	R/₩	MODE
0	0	Write/Awake
0	1	Read/Awake
1	X	Sleep

PIN DESCRIPTIONS

NAME	1/0	DESCRIPTION
HS0 - HS2	1.	Head Select: selects one of up to eight heads
H0X - H7X H0Y - H7Y	1/0	X,Y Head Terminals
WDI	I*	Write Data Input: TTL input signal, negative transition toggles direction of head current
CS	1	Chip Select: high level signal puts chip in sleep mode, low level wakes chip up
R/W	I*	Read/Write Select: high level selects read mode, low-level selects write mode
wus	0,	Write Unsafe: open collector output: high level indicates writes unsafe condition
wc		Write Current Adjust: a resistor adjusts level of write current
RDX - RDY	0,	Read Data Output: differential output data
vcc		+5V Supply**
GND		Ground

^{*} May be wire-OR'ed for multi-chip usage.

^{**} Although both VCC connections are recommended, only one connection is required as both are connected internally.

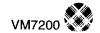
DC CHARACTERISTICS Unless otherwise specified, V_{CC} = V_{CC1} = V_{CC2} = V_{CC3} = 5V ±10%, T_A = 25°C

PARAMETER	SYM	CONDITIONS	MIN	TYP (Note 1)	MAX	UNITS
		Read Mode		33	45	
Power Supply Current	lcc	Write Mode		42 + I _W	50 + I _W	mA
		Idle Mode		1.5	3	
		Read Mode		165	230	
Power Dissipation	PD	Write Mode, I _W = 20mA		310	385	mW
		Idle Mode		7.5	17	
Input High Voltage	V _{IH}		2		V _{CC} + 0.3	٧
Input Low Voltage	V _{IL}		-0.3		0.8	٧
Input High Current	l _{IH}	V _{IH} = 2.7V			80	μА
Input Low Current	I _{IL}	V _{IL} = 0.4V	-160			μА
WUS Output Low Voltage	V _{OL}	I _{OL} = 4.0mA		0.35	0.5	٧
WUS Output High Current	Іон	V _{OH} = 5.0V		13	100	μА
VCC Value for Write Current Turn Off		I _H < 0.2mA	3.7	4.0	4.3	٧

Note 1: Typical values are given at V_{CC} = 5V and T_A = 25°C.

READ CHARACTERISTICS Recommended operating conditions apply unless otherwise specified, C_L (RDX, RDY) < 20pF, R_L (RDX, RDY) = $1k\Omega$.

PARAMETER	SYM	CONDITIONS	MIN	TYP (Note 1)	MAX	UNITS
Differential Voltage Gain	A _V	V _{IN} = 1mVrms, 1MHz, Note 2	167	195	233	V/V
Bandwidth	D)4/	-1dB Zs < 5Ω, V _{IN} = 1mVp-p	25	40		MHz
	BW	-3dB Zs < 5Ω , $V_{IN} = 1$ m V p-p	35	60		
Input Noise Voltage	e _{in}	BW = 17MHz, L _H = 0, R _H = 0		0.56	0.75	nV/√Hz
Differential Input Capacitance	C _{IN}	V _{IN} = 1mVp-p, f = 5MHz		19	23	pF
Differential Input Resistance	R _{IN}	V _{IN} = 1mVp-p, f = 5MHz	380	1000		Ω
Dynamic Range	DR	AC input voltage where the gain falls to 90% of the gain at 0.2mVrms input, f = 5MHz	4	10		mVrms
Common Mode Rejection Ratio	CMRR	V _{IN} = 100mVp-p @ 5MHz	50	73		dB
Power Supply Rejection Ratio	PSRR	100mVp-p @ 5MHz on V _{CC}	45	70	-	dB
Channel Separation	cs	Unselected channel driven with 20mVp-p @ 5MHz. Selected channels V _{IN} = 0mVp-p	45	60		dB
Output Offset Voltage	v _{os}		-300	25	+300	mV
RDX, RDY Common Mode Output Voltage	V _{OCM}	Read Mode		V _{CC} - 2.3		VDC
Read to Write Common Mode Output Voltage Difference	ΔV _{OCM}		-350	120	350	mV
Single-Ended Output Resistance	R _{SEO}			36	50	Ω
Output Current	lo	AC coupled load, RDX to RDY	±1.5			mA


Note 1: Typical values are given at V_{CC} = 5V and T_A = 25°C. Note 2: A_V is mask programmable for the VM7200L of 15 V/V.

WRITE CHARACTERISTICS Recommended operating conditions apply unless otherwise specified, $L_H = 1 \mu H$, $R_H = 30 \Omega$, $L_W = 20 mA$, $L_{DATA} = 5 mHz$.

PARAMETER	SYM	CONDITIONS	MIN	TYP (Note 1)	MAX	UNITS
WC Pin Voltage	V _{wc}			2.55		٧
I _{WC} to Head Current Gain	Aı			20		mA/mA
Write Current Constant	K _W	$K_W = (V_{WC})(A_I)$	46	51.5	54	٧
Write Current Range	lw	12.5K < R _{WC} < 5kΩ	10		40	mA
Write Current Tolerance	Δl _W	I _W range 10 - 40mA	-8	+3	+8	%
Differential Head Voltage Swing	V _{DH}	Open head	4	5.2		Vp-p
WDI Transition Frequency for Safe Condition	f _{DATA}	WUS = low	1			MHz
Differential Output Capacitance	C _{OUT}	Small signal conditions			25	pF
Differential Output Resistance	R _{OUT}	Small signal conditions	3200			Ω
Unselected Head Current	lun	I _W = 20mA		0.15	1	mA(pk)
RDX, RDY Common Mode Output Voltage	V _{CM}			V _{CC} - 2.3		V

Note 1: Typical values are given at V_{CC} = 5V and T_A = 25°C.

SWITCHING CHARACTERISTICS Recommended operating conditions apply unless otherwise specified; I_W = 20mA, f_{DATA} = 5MHz, L_H = 1 μ H, R_H = 30 Ω , C_L (RDX, RDY) \leq 20pF (see Figure 1).

PARAMETER	SYM	CONDITIONS	MIN	TYP (Note 1)	MAX	UNITS
R/W Read to Write Delay	t _{RW}	R/W to 90% I _W		0.1	1.0	μѕ
R/₩ Write to Read Delay	t _{WR}	R/W to 90% of 100mV, 10 MHz read signal envelope		0.6	1.0	μs
CS Unselect to Select Delay	t _{iR}	CS to 90% I _W or 90% of 100mV, 10MHz read signal envelope		0.27	0.6	μs
CS Select to Unselect Delay	t _{Al}	CS to 10% of I _W		0.08	0.6	μs
HS0 - HS2 any Head Delay	t _{HS}	HS0 - HS2 to 90% of 100mV, 10MHz read signal envelope		0.19	0.6	μѕ
WUS Safe to Unsafe Delay	t _{D1}		0.6	3.1	4.5	μs
WUS Unsafe to Safe Delay	t _{D2}			0.1	1	μs
Head Current Propagation Delay	t _{D3}	$L_H = 0$, $R_H = 0$, from 50% points		19	30	ns
Head Current Asymmetry	A _{SYM}	50% duty cycle on WDI, 1ns rise/fall time; L _H = 0, R _H = 0		0.2	1.0	ns
Head Current Rise/Fall Time		10% to 90% points, L _H = 0, R _H = 0	_	5	8	
	t _r /t _f	10% to 90% points, $L_H = 1\mu H$, $R_H = 30\Omega$		16	24	ns

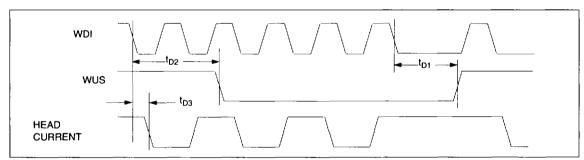


Figure 1: Write Mode Timing Diagram