9 Electrical specifications ### 9.1 DC electrical characteristics | SYMBOL | PARAMETER | MIN | MAX | UNITS | NOTES | |--------|-------------------------------------|------|-------------|-------|-------| | VDD | DC supply voltage | 0 | 7.0 | ٧ | 1,2,3 | | Vı, Vo | Voltage on input and output pins | -0.5 | VDD+0.5 | ٧ | 1,2,3 | | lı lı | Input current | | <u>+</u> 25 | mA | 4 | | tosc | Output short circuit time (one pin) | | 1 | s | 2 | | Ts | Storage temperature | -65 | 150 | °C | 2 | | TA | Ambient temperature under bias | -55 | 125 | °C | 2 | | PDmax | Maximum allowable dissipation | | 2 | w | 2 | #### **Notes** - 1 All voltages are with respect to GND. - 2 This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operating sections of this specification is not implied. Stresses greater than those listed may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. - 3 This device contains circuitry to protect the inputs against damage caused by high static voltages or electrical fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than the absolute maximum rated voltages to this high impedance circuit. Unused inputs should be tied to an appropriate logic level such as **VDD** or **GND**. - 4 The input current applies to any input or output pin and applies when the voltage on the pin is between **GND** and **VDD**. Table 9.1 Absolute maximum ratings | SYMBOL | PARAMETER | MIN | MAX | UNITS | NOTES | |--------|-----------------------------|-------------|------|-------|-------| | VDD | DC supply voltage | 4.75 | 5.25 | V | 1 | | | | | | | | | Vı, Vo | Input or output voltage | 0 | VDD | V | 1,2 | | CL | Load capacitance on any pin | | 60 | pF | 3 | | Та | Operating temperature range | - 55 | 125 | °C | | ### **Notes** - 1 All voltages are with respect to GND. - 2 Excursions beyond the supplies are permitted but not recommended; see DC characteristics. - 3 Excluding LinkOut load capacitance. Table 9.2 Operating conditions | SYMBOL | PARAMETER | | MIN | MAX | UNITS | NOTES | |--------|--------------------------|---|-------|-------------|-------|-------| | VIH | High level input voltage | | 2.0 | VDD+0.5 | ٧ | 1, 2 | | VIL | Low level input voltage | | -0.5 | 0.8 | V | 1, 2 | | lı | Input current | @ GND <vi<vdd< td=""><td></td><td><u>+</u>10</td><td>μΑ</td><td>1, 2</td></vi<vdd<> | | <u>+</u> 10 | μΑ | 1, 2 | | Vон | Output high voltage | @ IOH=2mA | VDD-1 | | V | 1, 2 | | Vol | Output low voltage | @ IOL=4mA | | 0.4 | V | 1, 2 | | loz | Tristate output current | @ GND <v0<vdd< td=""><td></td><td>±10</td><td>μА</td><td>1, 2</td></v0<vdd<> | | ±10 | μА | 1, 2 | | PD | Power dissipation | | | 1.2 | w | 2, 3 | | CIN | Input capacitance | @ f=1MHz | | 7 | рF | | | Coz | Output capacitance | @ f=1MHz | | 10 | рF | | ## **Notes** - 1 All voltages are with respect to GND. - 2 Parameters for IMS T805E measured at 4.75V<VDD<5.25V and -55°C<TA<125°C. Input clock frequency = 5 MHz. - 3 Power dissipation varies with output loading and program execution. Power dissipation for processor operating at 20 MHz. Table 9.3 DC characteristics ## 9.2 Equivalent circuits Figure 9.1 Load circuit for AC measurements Figure 9.2 AC measurements timing waveforms # 9.3 AC timing characteristics | Symbol | Parameter | Min | Max | Units | Notes | |--------|-----------------------------|-------------|-------------|-------|-------| | TDr | Input rising edges | 2 | 20 | ns | 1, 2 | | TDf | Input falling edges | 2 | 20 | ns | 1, 2 | | TQr | Output rising edges | | 25 | ns | 1 | | TQf | Output falling edges | | 15 | ns | 1 | | TS0LaX | Address hold after notMemS0 | a –8 | a +8 | ns | 3 | ### **Notes** - 1 Non-link pins; see section on links. - 2 All inputs except Clockin; see section on Clockin. - 3 a is T2 where T2 can be from one to four periods Tm in length. Address lines include MemnotWrD0, MemnotRfD1, MemAD2-31. Table 9.4 Input and output edges Figure 9.3 IMS T805E input and output edge timing Figure 9.4 IMS T805E tristate timing relative to notMemS0 Figure 9.5 Typical rise/fall times ## 9.4 Power rating Internal power dissipation (P_{INT}) of transputer and peripheral chips depends on **VDD**, as shown in figure 9.6. P_{INT} is substantially independent of temperature. Figure 9.6 IMS T805E internal power dissipation vs VDD Total power dissipation (PD) of the chip is $$P_D = P_{INT} + P_{IO}$$ where P_{IO} is the power dissipation in the input and output pins; this is application dependent. Internal working temperature T_J of the chip is $$T_{J} = T_A + \theta_{JA} \times P_D$$ where T_A is the external ambient temperature in ${}^{\circ}$ C and θ_{JA} is the junction-to-ambient thermal resistance in ${}^{\circ}$ C/W. Further information about device thermal characteristics can be found in section 10.3.