							R	EVIS	LONS										
LTR	DESCRIPTION DATE (YR-I						(YR-MC	D-DA)		APPR	OVED								
A	Add g 03. Make FIGUR	Add c chang	ase o	outl:	ine (to	devi	ce t	ype (01.	ype	9	4-05	-16		M.	. A.	FRYE	
REV																			
SHEET																			
SHEET																			
SHEET REV SHEET	US		RE	V		A	A	A	A	A	A	A	A	A	A	A	A	A	
******				V EET		A 1	A 2.	A 3	A 4	A 5	A 6	A 7	A 8	A 9	A 10	A 11	A 12	A 13	
SHEET SHEET REV STAT OF SHEET PMIC N/A	S		SH			1		-	4	5	6 SE EI	7 ECTR	8 ONIC	9 S SU	10 PPLY	11 CEN	12		
SHEET SHEET REV STAT DF SHEET PMIC N/A STAND MIL	S DARDIZE LITARY	D	SH PREPARICK	EET ARED E	FICER	1		-	4 Di	5 EFENS	6 SE EI	7 LECTR	8 CONIC	9 S SU OHIO	10 PPLY 454	11 CEN	12 TER	13	
SHEET SHEET SHEET OF SHEET PMIC N/A STAND MIL DRA	DARDIZE LITARY AWING	ABLE	SH PREP/ RICK CHECK RAJES	EET ARED E C. OF	PITHAI	1		-	4 DI	5 EFENS CROC	6 SE EI L	7 LECTR DAYTO	8 CONICON, O	9 S SU SHIO NEAR	10 PPLY 454	CEN'44	12 TER	13	
SHEET REV SHEET REV STAT OF SHEET PMIC N/A STAND MIL DRA THIS DRAWIN FOR USE BY A AND AGEN	DARDIZE LITARY AWING	ABLE ENTS E	SH PREP/ RICK CHECK RAJE:	EET ARED E C. OF KED BY SH R. OVED E AEL A.	PITHAI	1 DIA DATE	2	-	4 DI	5 CROC TTLI NOLI	6 SE EI EIRCU	7 LECTR DAYTO	SONICON, O	9 S SU SHIO NEAR	PPLY 454	CEN' 44 IDEF	12 TER	13 , FF	

DESC FORM 193 JUL 91

 $\underline{\texttt{DISTRIBUTION}\ \texttt{STATEMENT}\ \textbf{A}}.\ \texttt{Approved}\ \texttt{for}\ \texttt{public}\ \texttt{release};\ \texttt{distribution}\ \texttt{is}\ \texttt{unlimited}.$

5962-E195-94

■ 9004708 0001129 3T5 **■**

1. SCOPE

1.1 <u>Scope</u>. This drawing describes device requirements for class B microcircuits in accordance with 1.2.1 of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices".

1.2 Part or Identifying Number (PIN). The complete PIN shall be as shown in the following example:

1.2.1 <u>Device type(s)</u>. The device type(s) shall identify the circuit function as follows:

Device type	Generic number	<u>Circuit function</u>		
01	HA-2541	Fast settling, unity gain stable, wideband operational amplifier		
02	EL-2041	Fast settling, unity gain stable, wideband operational amplifier		
03	HA-2841	Fast settling, unity gain stable, video operational amplifier		

1.2.2 Case outline(s). The case outline(s) shall be as designated in MIL-STD-1835 and as follows:

Outline letter	Descriptive designator	<u>Terminals</u>	Package style
C P	GDIP1-T14 or CDIP2-T14 GDIP1-T8 or CDIP2-T8	14 8 12	Dual-in-line Dual-in-line Can
X 2	See figure 1 cqcc1-N2O	20	Square leadless chip carrier

1.2.3 <u>Lead finish</u>. The lead finish shall be as specified in MIL-STD-883 (see 3.1 herein). Finish letter "X" shall not be marked on the microcircuit or its packaging. The "X" designation is for use in specifications when lead finishes A, B, and C are considered acceptable and interchangeable without preference.

1.3 Absolute maximum ratings.

Voltage between +V and -V terminals
Differential input voltage (V _{IN}) ±6.0 V dc
Voltage at either input terminal +V to -V
Peak output current (< 10% duty cycle) 50 mA
Storage temperature range65°C to +150°C
Maximum power dissipation (P _D) 2.0 W <u>1</u> /
Lead temperature (soldering, 10 seconds):
Device types 01 and 02 +275°C
Device type 03
Thermal resistance, junction-to-case (θ_{ic}) :
Cases C, P, and 2 See MIL-STD-1835
Case X
Thermal resistance, junction-to-ambient (θ_{JA}) 50°C/W
Junction temperature (T _j) +175°C
Canada ven demperatura de la granda de la constanta de la cons

1/ Derate Linearly above $T_A = +75$ °C at 20 mW/°C.

STANDARDIZED MILITARY DRAWING	SIZE A		5962-87785
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL A	SHEET 2

DESC FORM 193A JUL 91

1.4 Recommended operating conditions.

2. APPLICABLE DOCUMENTS

2.1 <u>Government specification, standards, and bulletin</u>. Unless otherwise specified, the following specification, standards, and bulletin of the issue listed in that issue of the Department of Defense Index of Specifications and Standards specified in the solicitation, form a part of this drawing to the extent specified herein.

SPECIFICATION

MILITARY

MIL-1-38535 - Integrated Circuits (Microcircuits) Manufacturing, General Specification for.

STANDARDS

MILITARY

MIL-STD-883 - Test Methods and Procedures for Microelectronics.

MIL-STD-1835 - Microcircuit Case Outlines.

BULLETIN

MILITARY

MIL-BUL-103 - List of Standardized Military Drawings (SMD's).

(Copies of the specification, standards, and bulletin required by manufacturers in connection with specific acquisition functions should be obtained from the contracting activity or as directed by the contracting activity.)

2.2 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing shall take precedence.

3. REQUIREMENTS

- 3.1 Item requirements. The individual item requirements shall be in accordance with 1.2.1 of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices" and as specified herein. Product built to this drawing that is produced by a Qualified Manufacturer Listing (QML) certified and qualified manufacturer or a manufacturer who has been granted transitional certification to MIL-I-38535 may be processed as QML product in accordance with the manufacturers approved program plan and qualifying activity approval in accordance with MIL-I-38535. This QML flow as documented in the Quality Management (QM) plan may make modifications to the requirements herein. These modifications shall not affect form, fit, or function of the device. These modifications shall not affect the PIN as described herein. A "Q" or "QML" certification mark in accordance with MIL-I-38535 is required to identify when the QML flow option is used.
- 3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-STD-883 (see 3.1 herein) and herein.
 - 3.2.1 <u>Case outline(s)</u>. The case outline(s) shall be in accordance with 1.2.2 herein and figure 1.
 - 3.2.2 <u>Terminal connections</u>. The terminal connections shall be as specified on figure 2.

STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER	SIZE A		5962-87785
DAYTON, OHIO 45444		REVISION LEVEL A	SHEET 3

DESC FORM 193A JUL 91

🖿 9004708 0001131 T53 🖿

TABLE I. <u>Electrical performance characteristics</u>.

Test	Symbol	Symbol Conditions $\frac{1}{-55^{\circ}C} \le T_{A} \le +125^{\circ}C$ unless otherwise specified	Group A subgroups	Device type	Limits		Unit
			55 . 5p.		Min	Max	
Input offset voltage	v _{IO}	 v _{cm} = 0 v	1	01,02	-2.0	+2.0	m∀
•				03	-4.0	+4.0	
			2,3	01	-6.0	+6.0	
				02	-10.0	+10.0	
				03	-8.0	+8.0	
Input bias current	+I _{IB}	V _{CM} = 0 V,	11	01	-35	+35	μA
·	15	$\begin{array}{l} V_{CM} = 0 \ V, \\ +R_{S} = 1.1 \ k\Omega, \\ -R_{S} = 100\Omega \end{array}$	2,3		-50 -50	+50	
	İ	3 	11	02	15	+15	
			2,3		-20	+20	
			11	03	-10	+10	**
	j I		2,3		-20	+20	
	-I _{IB}	V _{CM} = 0 V,	11	01	-3 5	+35	
		$V_{CM} = 0 V,$ $+R_{S} = 100\Omega,$ $-R_{S} = 1.1 k\Omega$	2,3		-50	+50	
			1	02	-15	+15	
	İ		2,3		-20	+20	
			11	03	_10	+10] [
	į		2,3		-20	+20	<u> </u>
Input offset current	IIIO	$V_{CM} = 0 V_{c} + R_{c} = 1.1 k\Omega_{c}$	1	01	7.0	+7.0	μА
	10	$V_{CM} = 0 V, +R_{S} = 1.1 k\Omega,$ $-R_{S} = 1.1 k\Omega$	2,3		-9.D	+9.0	1
	į		1	02	-4.0	+4.0	
	Í		2,3		-6.0	+6.0	
			1	03	1.0	+1.0	
			2,3	-	-2.0	+2.0	

STANDARDIZED MILITARY DRAWING	SIZE A		5962-87785
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL A	SHEET 4

DESC FORM 193A JUL 91

■ 9004708 0001132 99T **■**

TABLE I. <u>Electrical performance characteristics</u> - Continued.

Test	Symbol Conditions <u>1</u> / -55°C ≤ T _A ≤ +125°C unless otherwise specified	Group A subgroups	Device type	Limits		Unit	
		unless otherwise specified			Min	Max	
Common mode input	+V _{CM}	+V = 5.0 V, -V = -25 V	1,2,3	01,03	10		V
voltage range				02	8	<u> </u>	
	-v _{cm}	+V = 25 V, -V = -5.0 V	1,2,3	01,03	 -10	<u> </u>	
				02	-8		
Large signal voltage gain	+A _{VOL}	 V _{OUT} = 0 V and 10 V, R _L = 1.0 kΩ	4	01,03	10	! !	kV/V
gam		R _L = 1.0 ks2		02	7		
			5,6	ALL	5.0		
	-A _{VOL}	V _{OUT} = 0 V and -10 V, R _L = 1.0 kΩ	4	01,03	10		
		K_ = 1.0 K32		02	7		
			5,6	ALL	5.0		ļ
Common mode rejection ratio	+CMRR	ΔV _{CM} = 10 V, +V = 5.0 V, -V = -25 V, V _{OUT} = -10 V	1,2,3	01,02	70		dB
14010		-V = -25 V, V _{OUT} = -10 V	1	03	86		
			2,3		80		
	-CMRR	ΔV _{CM} = -10 V, +V = 25 V, -V = -5.0 V, V _{OUT} = 10 V	1,2,3	01,02	70		!
		-V = -5.0 V, V _{OUT} = 10 V	11	03	86		
			2,3		80		
Output current	+I _{out}	v _{out} = -10 v	1	01	10		mA
				02	25		
		$V_{OUT} = -5 V \underline{2}$	11	03	25		
			2,3		15		
	⁻¹ out	$v_{OUT} = 10 v_{.}$	1	01	-10		
				02	-25		
		$V_{OUT} = +5 \ V \ \underline{2}/$	11	03	-25		
			2,3		 - 15		

STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON ONLO 45444	SIZE A		5962-87785
DAYTON, OHIO 45444		REVISION LEVEL A	SHEET 5

DESC FORM 193A JUL 91

■ 4004708 0001133 826 **■**

TABLE I. <u>Electrical performance characteristics</u> - Continued.

Test	Symbol Conditions $\frac{1}{2}$ / $-55^{\circ}C \leq T_{\bullet} \leq +125^{\circ}C$	Group A	Device type	:		Unit	
		-55°C ≤ T _A ≤ +125°C unless otherwise specified	Jungi oupo		Min	Max	
Output voltage swing	+V _{OUT}	$R_1 = 1.0 \text{ k}\Omega$	1,2,3	01,03	10		V V
	Cui			02	11		_
	-V _{OUT}	 R _i = 1.0 kΩ	1,2,3	01,03	-10	<u> </u>	-
	-			02	-11		
Quiescent power supply	+I _{CC}	V _{OUT} = 0 V, I _{OUT} = 0 mA	1,2,3	01	<u> </u>	39	_ mA
current		I _{OUT} = U mA		02		17	-
	ļ			03		11	-
	+Icc	V _{OUT} = 0 V, I _{OUT} = 0 mA	1,2,3	01		-39	-
		1 _{OUT} = U mA		02	<u> </u>	-17	-
			<u> </u>	03	<u> </u>	-11	-
Power supply rejection	+PSRR	+V = 5.0 V and 15 V,	1,2,3	01	70	<u> </u>	_ dB
ratio		-V = -15 V	_	02	60	<u> </u>	-
		+V = 10 V and 20 V, -V = -15 V		03	70		 -
	-PSRR	-V = -5.0 V and -15 V,	1,2,3	01	70		_
		+V = +15 V		02	60		_
		-V = -10 V and -20 V, +V = +15 V		03	70		
Offset voltage adjustment	+V _{IQ} (adj)	T _A = +25°C <u>3</u> /	1	ALL	V _{IO} -1.0		 mV
	-V _{IO} (adj)	T _A = +25°C <u>3</u> /	1	ALL	V _{IO} +1.0		

STANDARDIZED MILITARY DRAWING	SIZE A		5962-87785
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL A	SHEET 6

DESC FORM 193A JUL 91

■ 9004708 0001134 762 **■**

 ${\sf TABLE\ I.} \quad \underline{\sf Electrical\ performance\ characteristics}\ -\ {\sf Continued.}$

Test	Symbol	Conditions $\frac{1}{2}$ / $-55^{\circ}C \leq T_{A} \leq +125^{\circ}C$	Group A subgroups	Device type	Limits		Unit
		unless otherwise specified		 	Min	Max ·	
Differential input <u>4</u> / resistance	R _{IN}	V _{CM} = 0 V, T _A = +25°C	4	01,02	40		kΩ
Slew rate 4/	+SR	V _{OUT} = -3.0 V to 3.0 V, R _L = 1 kΩ, A _V = 1 V/V	7	01	200		V/µs
		$R_{L} = 1 \text{ KS2}, A_{V} = 1 \text{ V/V}$	8		150		
	-SR	$\begin{vmatrix} v_{OUT} = 3.0 & v_{OUT} = $	77	 	200	<u> </u>	
		$R_L = 1 k\Omega, A_V = 1 V/V$	 8		 150	<u> </u>	
	 +\$R	$V_{OUT} = -3.0 \text{ V to } 3.0 \text{ V,}$ $R_L = 1 \text{ k}\Omega, A_V = 1 \text{ V/V}$	77	02	 <u>180</u>		
	ļ		 8	İ	 130		
	-SR	$V_{OUT} = 3.0 \text{ V to } -3.0 \text{ V,}$ $R_L = 1 \text{ k}\Omega, A_V = 1 \text{ V/V}$	7		180		
			8	İ	1130		-
	+SR	$v_{OUT} = -3.0 \text{ V to } 3.0 \text{ V,}$ $R_L = 1 \text{ k}\Omega, A_V = 1 \text{ V/V}$	7	03	 200		
	į į		8	<u> </u>	187		
	-SR	 V _{OUT} = 3.0 V to -3.0 V,	7		200		Ì
		$L = 1 \text{ k}\Omega, \text{ A}_{\text{V}} = 1 \text{ V/V}$	8		1187		[
Gain bandwidth product <u>4</u> /	GBWP	$V_{OUT} = \pm 100 \text{ mV}, T_A = +25^{\circ}\text{C},$ $R_L = 1 \text{ k}\Omega, f_1 = 100 \text{ kHz},$ $f_2 = 10 \text{ MHz}$	4	ALL	38		MHz
		$V_{OUT} = \pm 200 \text{ mV}, T_A = +25^{\circ}\text{C},$ $R_L = 1 \text{ k}\Omega, f_O = 100 \text{ kHz}$	4	03	42		
		$\mid V_{OUT} = \pm 200 \text{ mV}, T_A = +25^{\circ}\text{C}, \\ \mid R_L = 1 \text{ k}\Omega, f_0 = 10 \text{ MHz}$			 44 		
Full power bandwidth 4/5/	FPBW	V _{PK} = 10 V, R _L = 1 kΩ	4	01	3.0		MHz
	ļ		5,6	ļ	2.4	<u> </u>	
	! !		4	02	2.8		
	 		5,6		2.0		

STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER	SIZE A		5962-87785
DAYTON, OHIO 45444		REVISION LEVEL A	SHEET 7

DESC FORM 193A JUL 91

■ 9004708 0001135 **6**T9 ■

TABLE I. <u>Electrical performance characteristics</u> - Continued.

Test	Symbol	Conditions <u>1</u> / 1 -55°C ≤ T. ≤ +125°C	Group A subgroups	Device type	Limits		Unit
		-55°C ≤ T _A ≤ +125°C unless otherwise specified			Min	Max	
Full power bandwidth 4/5/	FPBW	V _{PK} = 10 V, R _L = 1 kΩ	4	03	3.1		MHz
	İ		5,6		3.0		<u> </u>
Closed loop stable 4/ gain	CLSG	R _L = 1.0 kΩ, C _L ≤ 10 pF	4,5,6	ALL	1.0		V/V
Rise time <u>4</u> / <u>6</u> /	tr	V _{OUT} = 0 V to +200 mV	9,10,11	01,02		10	ns
		001		03		6	<u> </u>
Fall time <u>4</u> / <u>6</u> /	t _f	V _{OUT} = 0 V to -200 mV	9,10,11	01,02		10	ns
			9	03		5	_
•			10,11			6	ļ
Settling time 4/	t _s	A _V = -1 V/V, 10 V step to 0.1%, T _A = +25°C	9	01		150	ns
		A _V = -1 V/V, 10 V step to 0.01%, T _A = +25°C				300	
		A _V = -1 V/V, 10 V step to 0.05%, T _A = +25°C	9	 02 		 350 	
Overshoot 4/	+os	V _{OUT} = 0 V to +200 mV	9,10,11	01,02		40	_ %
-	İ		9	03		60	_
			10,11			65	_
	-os	V _{OUT} = 0 V to -200 mV	9,10,11	01,02		40	_
		TOUT	9	03		60	
			10,11			70	-
Output resistance 4/	R _{OUT}	Open toop	4	01,02		25	Ω

STANDARDIZED MILITARY DRAWING	SIZE A		5962-87785
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL A	SHEET 8

DESC FORM 193A JUL 91

9004708 0001136 535 **1**

TABLE I. Electrical performance characteristics - Continued.

Min	Max	
	1.17	_ w
		1.17

- 1/ Unless otherwise specified, for dc tests, $R_S = 100\Omega$, $R_L = 100~k\Omega$, and $V_{OUT} = 0~V$. Unless otherwise specified, for ac tests, $A_V = \pm 1~V/V$ and $R_L = 1~k\Omega$.
- $\underline{2}$ / Device type 03 is designed to handle I_{OUT} = 10 mA at a 50 % duty cycle for T_J = +175°C. For I_{OUT} = 15 mA and T_J = +175°C, a duty cycle of less than or equal to 33% is required.
- $\underline{3}/$ Offset adjustment range is V $_{10}$ (measured) ±1.0 mV minimum referred to output. This test is for functionality only to assure adjustment through 0 V.
- 4/ If not tested, shall be guaranteed to the limits specified in table I herein.
- 5/ Full power bandwidth = $SR/(2 \times \pi \times V_{pK})$.
- 6/ Rise and fall times measured between 10 percent and 90 percent point.
- $\overline{2}$ / Quiescent power consumption is based on quiescent supply current test maximum (no load outputs).
- 3.3 <u>Electrical performance characteristics</u>. Unless otherwise specified herein, the electrical performance characteristics are as specified in table I and shall apply over the full ambient operating temperature range.
- 3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are described in table I.
- 3.5 <u>Marking</u>. Marking shall be in accordance with MIL-STD-883 (see 3.1 herein). The part shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's PIN may also be marked as listed in MIL-BUL-103 (see 6.6 herein).
- 3.6 <u>Certificate of compliance</u>. A certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-BUL-103 (see 6.6 herein). The certificate of compliance submitted to DESC-EC prior to listing as an approved source of supply shall affirm that the manufacturer's product meets the requirements of MIL-STD-883 (see 3.1 herein) and the requirements herein.
- 3.7 <u>Certificate of conformance</u>. A certificate of conformance as required in MIL-STD-883 (see 3.1 herein) shall be provided with each lot of microcircuits delivered to this drawing.
- 3.8 <u>Notification of change</u>. Notification of change to DESC-EC shall be required in accordance with MIL-STD-883 (see 3.1 herein).
- 3.9 <u>Verification and review</u>. DESC, DESC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.

STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444	SIZE A		5962-87785
		REVISION LEVEL A	SHEET 9

DESC FORM 193A JUL 91

Inches	mm	Inches	mm
.016	0.41	.130	3.30
.020	0.51	.150	3.81
.021	0.53	. 400	10.16
-027	0.69	.505	12.83
.034	0.86	.545	13.84
.040	1.02	.555	14.10
.045	1.14	.562	14.27
.100	2.54	.585	14.86
		.615	15.62

NOTES:

- 1. Dimensions are in inches.
- Metric equivalents are given for general information only.
 Pin numbers are for reference only and do not appear on package.

FIGURE 1. <u>Case outline X</u>.

STANDARDIZED MILITARY DRAWING	SIZE A		5962-87785
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL	SHEET 10

DESC FORM 193A JUL 91

9004708 0001138 308

,				
Device types	01 and 02	01, 02, and 03	02	03
Case outlines	X	С	2	P
Terminal number	Terminal symbol			· · · · · · · · · · · · · · · · · · ·
1	NC	NC	NC NC	BAL
2	ИС	NC	BAL.	-IN
3	BAL	BAL	NC	+IN
4	BAL	-IN	NC	-v
5	-IN	+IN	-IN	NC
6	+IN	-v	NC	OUT
7	NC	NC	+IN	+٧
8	NC	NC	NC	BAL
9	NC	NC	NC	
10	-v	ОИТРИТ	-v	
11	оитрит	+V	NC	
12	+V	BAL	NC	
13		NC	NC	-
14		NC	NC	
15			OUT	
16			NC	
17			+V	
18			NC	 -
19			NC	
20			BAL	

NC = No connection.

FIGURE 2. <u>Terminal connections</u>.

STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER	SIZE A		5962-87785
DAYTON, OHIO 45444		REVISION LEVEL A	SHEET 11

DESC FORM 193A JUL 91

■ 9004708 0001139 244 **■**

- 4. QUALITY ASSURANCE PROVISIONS
- 4.1 <u>Sampling and inspection</u>. Sampling and inspection procedures shall be in accordance with MIL-STD-883 (see 3.1 herein).
- 4.2 <u>Screening</u>. Screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. The following additional criteria shall apply:
 - a. Burn-in test, method 1015 of MIL-STD-883.
 - (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of MIL-STD-883.
 - (2) $T_A = +125$ °C, minimum.
 - b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.
- 4.3 Quality conformance inspection. Quality conformance inspection shall be in accordance with method 5005 of MIL-STD-883 including groups A, B, C, and D inspections. The following additional criteria shall apply.
 - 4.3.1 Group A inspection.
 - a. Tests shall be as specified in table II herein.
 - 4.3.2 Groups C and D inspections.
 - a. End-point electrical parameters shall be as specified in table II herein.
 - b. Steady-state life test conditions, method 1005 of MIL-STD-883.
 - (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.
 - (2) $T_A = +125$ °C, minimum.
 - (3) Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.
 - 5. PACKAGING
- 5.1 <u>Packaging requirements</u>. The requirements for packaging shall be in accordance with MIL-STD-883 (see 3.1 herein).

STANDARDIZED MILITARY DRAWING	SIZE A		5962-87785
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL	SHEET 12

DESC FORM 193A JUL 91

| 9004708 0001140 T66 🖿

TABLE II. Electrical test requirements.

MIL-STD-883 test requirements	Subgroups (in accordance with method 5005, table I)
Interim electrical parameters (method 5004)	
Final electrical test parameters (method 5004)	1*,2,3,4,5,6
Group A test requirements (method 5005)	1,2,3,4,5,6,7**, 8**,9**,10**,11**
Groups C and D end-point electrical parameters (method 5005)	 1

^{*} PDA applies to subgroup 1.

6. NOTES

- 6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes.
- 6.2 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.
- 6.3 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished in accordance with MIL-STD-973 using DD Form 1692, Engineering Change Proposal.
- 6.4 <u>Record of users</u>. Military and industrial users shall inform Defense Electronics Supply Center when a system application requires configuration control and the applicable SMD. DESC will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronics devices (FSC 5962) should contact DESC-EC, telephone (513) 296-6047.
- 6.5 <u>Comments</u>. Comments on this drawing should be directed to DESC-EC, Dayton, Ohio 45444-5270, or telephone (513) 296-5377.
- 6.6 <u>Approved sources of supply</u>. Approved sources of supply are listed in MIL-BUL-103. The vendors listed in MIL-BUL-103 have agreed to this drawing and a certificate of compliance (see 3.6 herein) has been submitted to and accepted by DESC-EC.

STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444	SIZE A		5962-87785
		REVISION LEVEL A	SHEET 13

DESC FORM 193A JUL 91

■ 9004708 0001141 9T2

^{**} Subgroups 7, 8, 9, 10, and 11, if not tested, are guaranteed to the limits specified in table I.