				REVISIONS									310	NS							
				1	TR				DES	CRIP	TIO	N				DAT	E	ΑI	PR	OVEC)
				-																	
					l																
				ı	1										1		ı				
						T	i	1						- 1	1						I
REV				H		<u> </u>							-	7	1				\exists	\pm	I
PAGE	I BEV	Ξ									1			1							I
PAGE REV STATUS	REV		1 2	3 4	4 5	5 6	7	8	9	10	11	12	13	14 1	5 16	17	18	19	20	21 22	
PAGE REV STATUS OF PAGES	PAG		1 2 PRE							10	M	Ш	_17	ГΑ	5 16 RY)R	lΑ	W	21 22 IN	
PAGE REV STATUS OF PAGES Defense Electr	PAG									10	M	Ш	_17	ГΑ	RY)R	lΑ	W	21 22 IN	T G
PAGE REV STATUS OF PAGES	PAG		PRE	PAR	ED	m m				10	M Thi	is di Dec	rawi	FA ng is nents	5 16 RY avail and befens	able Agen)R	lΑ	W	21 22 IN	T G
PAGE REV STATUS OF PAGES Defense Electr Supply Center	PAG		CHI	PAR R C ECKE	ED	m)				10	Thi all De	is di Der parti	rawii partn men	ng is nents t of D	avail and efens	able Agen e	for icies	use s of	by the	1N	G —
PAGE REV STATUS OF PAGES Defense Electr Supply Center Dayton, Ohio Original date	PAG		CHI	PAR R C ECKE	ED	m)				10	Thi all De	is di Dec	rawii partn men	ng is nents t of D ICROCES	avail and Defens	able Agen e	for icies	use s of	by the	1N	G —
PAGE REV STATUS OF PAGES Defense Electr Supply Center Dayton, Ohio	PAG		CHI CHI	ECKE PROVI	ED Z	BY BY BY	3	ni.	۔ عر	2	Thi all De	is d Dep parti	rawii partn men :: M P	ng is nents t of D ICROC ROCES	RY avail and Defens CIRCUI SOR ON	able Agen e ITS, CPU,	for scies 8-E NMC	uses of	by the MICE MONO	O- OLITH	IC
PAGE REV STATUS OF PAGES Defense Electr Supply Center Dayton, Ohio Original date	PAG	iES	CHI	ECKE PROV	ED WED COL	m)	STATE OF STA	NT.		2	Thi all De	is di Der parti	rawii partn men	ng is nents t of D ICROC ROCES	avail and Defens	able Agen e ITS, CPU,	for scies 8-E NMC	uses of	by the MICE MONO	O- OLITH	IC

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

DESC FORM 193 MAY 86

1	CC	OPE

1.1 Scope. This drawing describes device requirements for class B microcircuits in accordance with 1.2.1 of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN" devices."

1.2 Part number. The complete part number small be as shown in the following example:

1.2.1 Device type. The device type small identify the circuit function as follows:

ce cype.		Circuit function
Device type	Generic number	Circuit function
	22.22	8-bit microprocessor CPU
01	8088	0-910 mrs. sp. 0-2

1.2.2 Case outline. The case outline shall be as designated in appendix C of MIL-M-38510, and as follows:

†0110W5•	Outline letter	Case outline D-5 (40-lead 9/16" x \geq 1/16") dual-in-line package

1.3 Absolute maximum ratings.

-1 V dc to +7 V dc -1 V dc to +7 V dc -65°C to +150°C Supply voltage range - - - - - -Maximum power dissipation Pp _____ Lead temperature (soldering, 10 seconds) - - - -2.5 W +300 C Thermal resistance, junction-to-case (θ_{JC}): See MIL-M-38510, appendix C Junction temperature (T_J) ------+150°C

1.4 Recommended operating conditions.

5.0 V dc ±10% 2.0 V dc V_{CC} + 0.5 V dc -0.5 V dc +0.8 V dc -55°C to +125°C

	SIZE		DWG NO).	
MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO	A		5	962-87685	
		REV		PAGE	2

2. APPLICABLE DOCUMENTS

2.1 Government specification and standard. Unless otherwise specified, the following specification and standard, of the issue listed in that issue of the Department of Defense Index of Specifications and Standards specified in the solicitation, form a part of this drawing to the extent specified herein.

SPECIFICATION

MILITARY

MIL-M-38510

- Microcircuits, General Specification for.

STANDARD

MILITARY

MIL-STD-883

Test Methods and Procedures for Microelectronics.

(Copies of the specification and standard required by manufacturers in connection with specific acquisition functions should be obtained from the contracting activity or as directed by the contracting activity.)

- 2.2 Order of precedence. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing shall take precedence.
 - 3. REQUIREMENTS
- $3.1\,$ Item requirements. The individual item requirements shall be in accordance with $1.2.1\,$ of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices" and as specified herein.
- 3.2 Design, construction, and physical dimensions. The design, construction, and physical dimensions shall be as specified in MIL-M-38510 and herein.
 - 3.2.1 Terminal connections. The terminal connections shall be as specified on figure 1.
 - 3.2.2 Block diagram. The block diagram shall be as specified on figure 2.
 - 3.2.3 Case outline. The case outline shall be in accordance with 1.2.2 herein.
- 3.3 Electrical performance characteristics. Unless otherwise specified, the electrical performance characteristics are as specified in table I and apply over the full recommended case operating temperature range.
- 3.4 Marking. Marking shall be in accordance with MIL-STD-883 (see 3.1 herein). The part shall be marked with the part number listed in 1.2 herein. In addition, the manufacturer's part number may also be marked as listed in 6.5 herein.
- 3.5 <u>Certificate of compliance</u>. A certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in 6.5. The certificate of compliance submitted to DESC-ECS prior to listing as an approved source of supply shall state that the manufacturer's product meets the requirements of MIL-STD-883 (see 3.1 herein) and the requirements herein.
- 3.6 <u>Certificate of conformance</u>. A certificate of conformance as required in MLL-STD-883 (see 3.1 herein) shall be provided with each lot of microcircuits delivered to this drawing.
- 3.7 Notification of change. Notification of change to DESC-ECS shall be required in accordance with MIL-STD-883 (see 3.1 herein).

MILITARY DRAWING	SIZE		DWG NC) 962-87685	
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO		REV		PAGE	3

	Т	Calibians	Group A	Limits		Unit
Test	Symbol 	Conditions $ \begin{array}{c} \text{Conditions} \\ -55^{\circ}\text{C} < \text{T}_{\text{C}} \leq +125^{\circ}\text{C} \\ 4.5 \text{ V} \leq \text{V}_{\text{CC}} \leq 5.5 \text{ V} \\ \text{unless otherwise specified} \end{array} $	subgroups	Min	Max	
ow level input voltage	٧١٢		1, 2, 3		υ.8 	V
igh level input voltage	HIV		1, 2, 3	2.0		V
ign level output voltage	V _{OH}	I _{OH} = -400 μA	1, 2, 3	2.4 		V
ow level output voltage	V _{OL}	$I_{OL} = 2.0 \text{ mA}$ $V_{CC} = 4.5 \text{ V}$	1, 2, 3	i I	1 0.45 1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
ower supply l current	Icc	T_{C} = +25°C V_{CC} = 5.5 V (The I_{CC} is measured while running a functional pattern with specified value I_{OL}/I_{OH} loads applied.)	1, 2, 3	 - - - -	340	mA
Input leakage current	ILI	V _{CC} = 5.5 V V _{IN} = 5.5 V and 0 V	1, 2, 3	-10	10	μΑ
Output leakage current	ILO	V _{CC} = 5.5 V V _{OUT} = 5.5 V and 0.45 V	1, 2, 3	 -10 	10	μA
Clock input high	V _{CH}	V _{CC} = 4.5 V and 5.5 V	1, 2, 3	3.9	 	V
Clock input low voltage	VCL	V _{CC} = 4.5 V and 5.5 V	1, 2, 3	-	0.6	V
Capacitance of input buffer (All input except AUO-AU7, RQ/GT)	CIN	F _C = 1 MHz See 4.3.1c	4	1	20	l pF
Capacitance of I/O buffer (AD _O -AD ₇ , RQ/GT)	c ₁₀	F _C = 1 MHz See 4.3.1c	4	1	20	pF
Functional testin	g l		7, 8	- 	- 	
Clock cycle perio	i	(See figures 3 and 4) $\frac{1}{2}$	9,10,11	200	500 	ns
Clock low time	tCLC1		9,10,11	118	1	ns
See footnotes at e	end of tapl	e. SIZE	DWG	NO.		
MILITAR	Y DRA			5962-87	7685	

T	Suntral	(Conditions	 Group A	Li	nits	Unit
Test	Symbol 	-55°C	<pre>< T_C < +125°C < V_{CC} < 5.5 V therwise specified</pre>	subgroups	 Min 	 Max 	i
Clock high time	t _{CHCL}	(See figur	es 3 and 4) $1/$	9,10,11	69	<u> </u>	ns
Data in setup time	t _{DVCL}			9,10,11	30		ns
)ata in hold time	t _{CLDX}			9,10,11	10	<u> </u>	ns
READY setup time into 8088	t _{RYHCH}			9,10,11	118		ns
READY hold time	^t CHRYX			9,10,11	30	<u> </u>	ns
READY inactive	t _{RYLCL}			9,10,11	-8		ns
HOLD setup time	tнусн			9,10,11	35	<u> </u>	ns
INTR, NMI, TEST setup time	t _{INVCH}			9,10,11	30		ns
RQ/GT setup time	t _{GVCH}	 		9,10,11	30	<u> </u>	ns
RQ hold time	t _{CHGX}	 		9,10,11	40		ns
READY active to status passive	t _{RYHSH}	i 		9,10,11		110	ns
Status active delay	t _{CHSV}	† ! !		9,10,11	10	110	ns
Status inactive delay 3/4/	t _{CLSH}			9,10,11	10	130	ns l
Address valid delay	t _{CLAV}	- -		9,10,11	10	110	l ns
Address hold time $\frac{3}{4}$	tCLAX	 		9,10,11	10		ns
Address float delay 4/	t _{CLAZ}	-¦ 		9,10,11	10	 80 	ns
See footnotes at e	nd of table	e.				.	
MILITAR	Y DRAV	VING	SIZE A	DWG	NO. - 596∠-87	์ 685	
DEFENSE ELECTR	ONICS SUPP	LY CENTER	REV		PAG	E.	5

	0		Conditions		Group A	Li	mits	Unit
Test	Symbol	55°C	< T _C $<$ +125°C < V _{CC} $<$ 5.5 V otherwise specifi		ubgroups	Min	Max	
_E width <u>5</u> /	t _{LHLL}		res 3 and 4) $1/$	ļ	,10,11	98		ns
LE active delay	t _{CLLH}			 9 	,10,11		80	ns
LE inactive delay	t _{CHLL}			 9 	,10,11		85	ns
ddress hold time to ALE inactive 3/	t _{LLAX}			 <u>9</u> 	9,10,11	 59 	1	l ns
Data valid delay 4/	t _{CLDV}			1 9	9,10,11	10	110	ns
Data hold time 5/	t _{CHDX}			1	9,10,11	10	<u> </u>	ns
Data hold time after WR <u>5</u> /	twHDX			 -	9,10,11	88		ns
Control active delay 1 4/	t _C VCTV	 		 	9,10,11	10	110	ns
Control active delay 2 4/	t _{CHCTV}	-i 		 	9,10,11	10	110	ns
Control inactive	tcvctx	-		 	9,10,11	10	110	ns
Address float to READ active 6	t _{AZRL}	_ 1 		T I I	9,10,11	0		ns
RD active delay	t _{CLRL}			T ! !	9,10,11	10	165	ns
RD inactive delay	tCLRH	_{ 			9,10,11	 10 	150	l ns
See footnotes at 6	end of tabl	e.			·			
MILITAR	Y DRA	WING	SIZE		DWG	10 - 596∠-8 - T	7685	
DEFENSE ELECTR	IONICS SUPF TON, OHIO	PLY CENTER		REV		PAC	SE	6

1	1/	lest conditions for all do similar
ľ		$V_{CC} = 4.5 \text{ V}, 5.5 \text{ V}$
ł		$V_{T1} = 0.45 \text{ V}, V_{TH} = 2.4 \text{ V}$
1		$v_{\text{TLC}} = 0.25 \text{ V}, v_{\text{CHC}} = 4.3 \text{ V}$
ļ		$v_{0L}^{1LC} = 1.4 \text{ V}, v_{0H} = 1.6 \text{ V}$
l		Figure 3 and 4
Į	2/	Test conditions for t _{CLCL} maximum are:
l	='	Voc = 4.5 V
١		V _{CC} = 4.5 V V _{IL} = 0 V
١		VIH = 4 V
ł		$V_{\text{TMC}} = 5 \text{ V}$
ł		VILC = 0 V $V_{0L} = 1 V$ $V_{0L} = 1 V$
		Vol. = 1 V
ı	3/	Minimum specification tested at V _{CC} maximum (5.5 V) only.
	77/	Maximum specification tested at VCC minimum (4.5 V) only.
Ì	17/	Tested at V _{CC} maximum (5.5 V) only.
ļ	5/	Tested at VCC minimum (4.5 V) only.
	2/	163664 40 100 million 1

MILITARY DRAWING	
DEFENSE ELECTRONICS SUPPLY CENTE	R
DAYTON, OHIO	

_	SIZE		 	DWG N	0				
	A				5962-87685				
		<u> </u>	REV		PAGE	7			
							_		

SWITCHING TEST (LOAD CIRCUIT) SWITCHING TEST (INPUT/OUTPUT WAVEFORM) **DEVICE** UNDER TEST 1.5 TEST CL=100 pF 0.45 C_L includes jig capacitance. AC testing inputs are driven at 2.4 V for a logic "1" and 0.45 V for a logic "0". The clock is driven at 4.3 V and 0.25 V. Timing measurements are made at 1.5 V for both a logic "1" and "0". FIGURE 3. Switching tests. DWG NO. SIZE MILITARY DRAWING 5962-87685 DEFENSE ELECTRONICS SUPPLY CENTER PAGE 10 REV DAYTON, OHIO DESC FORM 193A

FEB 86

BUS TIMING-MINIMUM MODE SYSTEM (CONTINUED)

NOTES:

- All signals switch between v_{OH} and v_{OL} unless otherwise specified. RDY is sampled near the end of T2, T3, TW to determine if TW machines
- Two INTA cycles run back to back. The 8088 local ADDR/DATA bus is floating during both INTA cycles. Control signals are shown for the second INTA cycle.
- Signals at 8284 are shown for reference only.
 All timing measurements are made at 1.5 V unless otherwise noted.

FIGURE 4. Switching waveforms - Continued.

DWG NO SIZE 5962-87685 MILITARY DRAWING Α DEFENSE ELECTRONICS SUPPLY CENTER PAGE 13 REV DAYTON, OHIO

BUS LOCK SIGNAL TIMING (MAXIMUM ONLY) MODE ASYNCHRONOUS SIGNAL RECOGNITION ANY CLOCK ANY CLOCK CYCLE CLK CLK - TINVCH (SEE NOTE I) NMI TCLAV SIGNAL INTR LOCK TEST Set-up requirements for asynchronous signals only to guarantee NOTE: recognition at next CLK. REQUEST/GRANT SEQUENCE TIMING (MAXIMUM MODE ONLY) CLOCK PULSE 2 8088 G RQ/GT PREV GRANT A19/S6-A16/S3 COPROCESSOR 8088 8088 A15-A8 (SEE NOTE I) AD7 ADO ร์ , ริ RD, LOCK The coprocessor may not drive the buses outside the region shown without rising contention. NOTE: HOLD/HOLD ACKNOWLEDGE TIMING (MINIMUM MODE ONLY) 1 OR 2 CLK нусң **HVCH** (SEE NOTE I) HOLD †CLHAV HLDA 8088 COPROCESSOR 8088 1. All signals switch between v_{OH} and v_{OL} unless otherwise specified. FIGURE 4. Switching waveforms - Continued. DWG NO. SIZE MILITARY DRAWING 5962-87685

REV

PAGE

16

DEFENSE ELECTRONICS SUPPLY CENTER

DAYTON, OHIO

- 4. QUALITY ASSURANCE PROVISIONS
- 4.1 Sampling and inspection. Sampling and inspection procedures shall be in accordance with section 4 of MIL-M-38510 to the extent specified in MIL-STD-883 (see 3.1 herein).
- 4.2 Screening. Screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. The following additional criteria shall apply:
 - a. Burn-in test (method 1015 of MIL-STU-883).
 - (1) Test condition C or D using the circuit submitted with the certificate of compliance (see 3.5 herein).
 - (2) $T_A = +125$ °C, minimum.
 - b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.
- 4.3 Quality conformance inspection. Quality conformance inspection shall be in accordance with method $\overline{5005}$ of MIL-STD-883 including groups A, B, C, and D inspections. The following additional criteria shall apply.
 - 4.3.1 Group A inspection.
 - a. Tests shall be as specified in table II herein.
 - b. Subgroups 5 and 6 in table I, method 5005 of MIL-STD-883 shall be omitted.
 - c. Subgroup 4 ($c_{\rm IN}$ and $c_{\rm IO}$ measurements) shall be measured only for the initial test and after process or design changes which may affect capacitance.
 - d. Subgroups 7 and 8 shall include verification of instruction set.
 - 4.3.2 Groups C and D inspections.
 - a. End-point electrical parameters shall be as specified in table II herein.
 - b. Steady-state life test (method 1005 of MIL-STD-883) conditions:
 - (1) Test condition C or D using the circuit submitted with the certificate of compliance (see 3.5 herein).
 - (2) $T_A = +125^{\circ}C$, minimum.
 - (3) Test duration: 1,000 hours, except as permitted by appendix B of MIL-M-38510 and method 1005 of MIL-STD-883.

	SIZE		DWG NO	•		İ
MILITARY DRAWING	l A		5	962-87685		
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO		REV		PAGE	17	
	<u>L</u>	 L				

TABLE II. Electrical test requirements.

MIL-STD-883 test requirements	Subgroups (per method 5005, table I)
Interim electrical parameters (method 5004)	
Final electrical test parameters (method 5004)	1*,2,3,7,8, 9,10,11
Group A test requirements (method 5005)	1,2,3,7,8, 9,10,11
Groups C and D end-point electrical parameters (method 5005)	1,2,3,7,8, 9,10,11
Additional electrical subgroups for group C periodic inspections	

^{*} PDA applies to subgroup 1.

5. PACKAGING

5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-M-38510.

6. NOTES

6.1 Intended use. Microcircuits conforming to this drawing are intended for use when military specifications do not exist and qualified military devices that will perform the required function are not available for OEM application. When a military specification exists and the product covered by this drawing has been qualified for listing on QPL-38510, the device specified herein will be inactivated and will not be used for new design. The QPL-38510 product shall be the preferred item for all applications.

6.2 Replaceability. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.

	SIZE			DWG NO		
MILITARY DRAWING	A			5	962-87685	
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO			REV		PAGE	18
	<u> </u>	_	l		L	

6.3 Pin description. The following pin function descriptions are for 8088 systems in either minimum or maximum mode. The "local bus" in these descriptions is the direct multiplexed bus interface connection to the 8088 (without regard to additional bus buffers).

Pin number	Name	1/0			Description	
9-16	AD7-AU0	1/0	memory/IO a bus. These	ddress (' lines a	These lines constitut T ₁) and data (T ₂ , T ₃ , Te active HIGH and fl ge and local bus "nol	te the time multiplexed Tw, and T4) oat to 3-state OFF during d acknowledge".
39, 2-8	A ₁₅ -A ₈	0	for the ent to be latch	ire bus d ed by AL! o 3-state	e OFF during interrup	s bits 8 through 15 elines do not have 15-A8 are active HIGH t acknowledge and local
35-3d	A ₁₉ /S ₆ , A ₁₈ /S ₅ , A ₁₇ /S ₄ , A ₁₆ /S ₃		significant I/O operati I/O operati lines durin status of t beginning o This inform being used	address ons these ons, sta y T2,T3, he inter f each c ation in for data	lock cycle S ₄ and S ₃ dicates which segment	erations. During ring memory and vailable on these vays LOW. The (S5) is updated at the are encoded as shown. Tregister is presently
	İ !		1		Chaustanistica	7
			S4		Characteristics 	 -
	i		O (LOW)	0	Alternate data	<u> </u>
	<u> </u>	 	0	1	Stack	- -
	 		1 (HIGH)	0	Code or none	- -
	 		1	1	Data	- -
			S ₆ is 0			- -
	! 		(LOW)			

DWG NO

5962-87685

PAGE

19

MILITARY DRAWING	SIZE A	
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO		REV

in number	Name 	1/0			Description		
32	RD	0	memory or or S ₂ . Th 8088 local read cycle 8088 local	I/O read cy is signal i bus. RD i , and is gu bus has fl	cle depending on s used to read d s active LOW dur laranteed to rema oated.	processor is performing the state of the IO/M periods which reside on ting T_2 , T_3 and T_W of any in HIGH in T_2 until the	the
22	READY		device tha from memor to form RE is not syr	t it will or by or I/O is ADY. This achronized.	complete the data s synchronized by signal is active	addressed memory or I/U transfer. The RDY sign the 8284 clock generate HIGH. The 8088 READY on is not guaranteed if	naı or input
18	INTR	I	during the the proces operation. lookup tab	e last clock sor should A subrout le located software re	c cycle of each i enter into an in tine is vectored in system memory esetting the into	l input which is sampled nstruction to determine sterrupt acknowledge to via an interrupt vector. It can be internally errupt enable bit. INTR is active HIGH.	tor
23	TEST	I	the TEST	input is LON	w, execution cont n "idle" state.	t for test" instruction. Linues; otherwise, the This input is synchroni In the leading edye of CL	zed
17	NMI	I	type 2 intervention the intervention	terrupt. A okup table v bv softwa	subroutine is Vollocated in system re. A transition end of the curr	ggered input which cause ectored to via an interr m memory. NMI is not ma n from a LOW to HIGH ini ent instruction. This i	upt skable tiates
21	RESET	I	activity.	The signa It restarts iption, whe	1 must be active execution, as d	diately terminate its pr HIGH for at least four escribed in the instruct LOW. RESET is internall	clock
19	CLK	I	controlle	rovides the r. It is a internal t	symmetric with a	r the processor and bus 33 percent duty cycle t	o provide
				Leize		DWG NO	
MII	ITARY	DRAV	VING	SIZE		5962-87685	
	ELECTRON				<u></u>	1 332.3, 333	

0. 0.

in number	Name	1/0			Description		
40	Vcc		V _{CC} . The	+5 V ±10% p	oower supply pi	1.	
1, 20	GND		GND. The	ground pins	· .		
33	MIN/MX	I	Minimum/ma in. The t	ximum. Ind wo modes a	licates what moore discussed in	ie the proce the follow	essor is to operate ing sections.
28	 IO/M 		distinguis valid in t	n a memory he T⊿ prece	eding a bus cyc	I/O access le and rema	. IO/M becomes
29	WR		memory or	write I/O o ਕੋ is active ve LOW and	cycle, depending	on the sta	performing a write ate of tne IO/M write cycle. local bus "nold
24	I INTA	0	It is acti	d as a read ve LOW duri ement cycle	ing T_2, T_3 and T_1	terrupt acki y of each i	nowledge cycles. nterrupt
25	ALE	0 1	address in	to 8282/828	33 address latch	n. Itisa	or to latch the HIGH pulse active that ALE is never
27	DT/R	0	to use an the direct DT/R is eq the same a	8286/8287 dion of data uivalent to s for 10/M	lata bus transce a flow through t	eiver. It the transce imum mode, a This sid	stem that desires is used to control iver. Logically and its timing is gnal floats to
26	DEN L DEN L L		minimum sy during eac read or IN middle of beginning	stem that under the memory and TA cycle, if T4; while if of T2 until	uses the transcend I/O access and I/O access and it is active from a write cycl	eiver. DEN nd for INTA om the midd le, it is ac Ta. DEN f	cycles. For a le of T ₂ until the
	I	1 1					
MILI	TARY (DRAW	/ING	SIZE		DWG N	o 5962-87685
MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO				REV		PAGE 21	

■ 9004697 0203026 772 **■**

- 6.4 Comments. Comments on this drawing should be directed to DESC-ECS, Dayton, Onio 45444, or telephone 513-296-5375.
- 6.5 Approved source of supply. An approved source of supply is listed herein. Additional sources will be added as they become available. The vendor listed herein has agreed to this drawing and a certificate of compliance (see 3.5 herein) has been submitted to DESC-ECS.

Military drawing part number	Vendor CAGE number	Vendor similar part number 1/	Replacement military specification part number
5962-8768501QX	34335	8088/BQA	

 $\frac{1}{to\ this}$ Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.

Vendor CAGE number

34335

Vendor name and address

Advanced Micro Devices, Incorporated 901 Thompson Place P.O. Box 3453 Sunnyvale, CA 94088

MILITARY DRAWING	SIZE A		DWG	NO. 5962-87685	
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO		REV		PAGE	22
DESC FORM 193A	1	4			

011695 _ _