
Rev. 0.1 7/12 Copyright © 2012 by Silicon Laboratories AN719

AN719

PRECISION32™ IDE AND APPBUILDER DETAILED
TUTORIAL AND WALKTHROUGH

1. Introduction

This document provides a step-by-step tutorial walkthrough for the Precision32 Development Tools (IDE and
AppBuilder) using the SiM3U1xx-B-DK hardware and Silicon Labs SDK version 1.0.1. The first series in the
walkthrough imports a pre-existing example into the IDE and discusses the IDE debugging basics. The second
series guides the creation of a TIMER0 Blinky example using AppBuilder and adds some additional code editing
and debugging tips for the IDE.

Figure 1. Precision32 IDE and AppBuilder Walkthrough Overview

AN719

2 Rev. 0.1

2. Relevant Documentation

Precision32 Application Notes are listed on the following website: www.silabs.com/32bit-appnotes.

AN667: Getting Started with the Silicon Labs Precision32™ IDE—provides a description of the IDE
features and environment.

AN670: Getting Started with the Silicon Labs Precision32™ AppBuilder —provides a description of the
AppBuilder features.

3. Hardware Setup

To set up the hardware for this walkthrough:

Figure 2. Hardware Setup Diagram

1. Connect the USB Debug Adapter to J31 and connect the Debug Adapter to the PC with a USB cable.

2. Move the USER CONTROL MCU card switch (SW4) to ON.

3. Move the SYSTEM Power Select switch (SW5) to the USB position.

4. Connect a mini USB cable to the Device USB connector (J13). Connect the cable to the PC to power the
board.

mini USB
cable USB Debug

Adapter
4

1

3

2

www.silabs.com/32bit-appnotes

AN719

Rev. 0.1 3

Figure 3. Shorting Block Settings

5. Verify the shorting blocks are installed as shown in Figure 3:

a. J18 top two pins

b. J14

c. J15

d. J17

e. J16

AN719

4 Rev. 0.1

4. Lab Software Setup

1. Install the Precision32 package from www.silabs.com/32bit-software.

2. Open the Precision32 IDE and activate it, if it’s not activated already. Instructions on how to do this are
available on the Welcome page in the IDE.

5. Walkthrough Series #1: Running Blinky in the Precision32 IDE

5.1. Objectives
The objectives of series are:

Learn how to import an SDK example into the Precision32 IDE.

Learn how to download a program to a device.

Explore some of the debugging features of the IDE.

5.2. Instructions
1. Launch the Precision32 IDE 1.0.1 (default path: C:\SiLabs\Precision32_v1.0.1\IDE) and select a

workspace (C:\SiLabs\workspace).

2. Activate the IDE using the instructions on the landing page, if the IDE isn’t already activated.

3. Set the Silicon Labs SDK path to C:\SiLabs\32bit\si32-1.0.1.

3

www.silabs.com/32bit-software

AN719

Rev. 0.1 5

4. Click the Import SI32 SDK example(s) link in the Quickstart view.

5. Scroll down and check just the sim3u1xx_Blinky example. The default path for importing projects is
C:\SiLabs\32bit\si32-x.y.z\Examples, where x.y.z is the version of the SDK selected in the previous step,
but the Browse... button can be used to navigate to a specific example directory. The Deselect All button
is also useful for deselecting a long set of examples.

6. Ensure the Copy projects into workspace checkbox is enabled.

7. Click Finish.

4 5

6

7

AN719

6 Rev. 0.1

8. Click the sim3u1xx_Blinky project name.

9. Click the Build ‘sim3u1xx_Blinky’ [Debug] link.

8

9

AN719

Rev. 0.1 7

10. Click the Debug ‘sim3u1xx_Blinky’ [Debug] link. The Debug view will open with trace information.

10

AN719

8 Rev. 0.1

11. Start the program. PB2.10 and PB2.11 will blink after a small delay. The printf() output from the example
will appear in the Console view.

11

AN719

Rev. 0.1 9

12. Pause the program.

13. Double-click the blue area next to a line to add a breakpoint.

14. Start the program again.

14

12

13

AN719

10 Rev. 0.1

15. Highlight the msTicks_10 variable in the main.c file, right click, and select Add Watch Expression....

16. Press OK in the Add Watch Expression dialog.

17. Select the Expression view.

15

17

16

AN719

Rev. 0.1 11

18. Click the Resume button a few times. The program will stop each time at the breakpoint and update the
value of msTicks_10.

18

AN719

12 Rev. 0.1

19. Select the Peripheral view.

20. Select the Memory view.

21. Enable the RTC-0 checkbox.

22. Disable the RTC by selecting DISABLED for the RTCEN bit.

23. Double-click on the breakpoint to remove it.

24. Start the program again. The PB2.10 LED will stop blinking since the RTC is no longer running. PB2.11
still blinks because it’s running from the SysTick timer.

24

22

21

19

23

20

AN719

Rev. 0.1 13

25. Click the Terminate button to end the debugging session.

25

AN719

14 Rev. 0.1

6. Walkthrough Series #2: Creating a Timer Blinky

6.1. Objectives
The objectives of this series are:

Use AppBuilder to configure the TIMER0 high 16-bit timer to generate a 12 Hz waveform on PB2.10 (red
LED).

Use the information learned in Lab 1 to download and debug the generated AppBuilder project.

6.2. Lab Preparation
The default SiM3U1xx oscillator is the Low Power Oscillator at 20 MHz, but this doesn’t create a 12 Hz waveform
cleanly:

Instead, we can use the 48 MHz USB0 oscillator. The actual overflow rate desired for the timer is 12 Hz multiplied
by two, since the timer must overflow for each rising and falling edge of the waveform on the pin. This means our
TIMER0 effective overflow rate is:

The TIMER0 module has two ways to meet this overflow rate. The module can clock from a divided version of APB.
This prescaler (CLKDIV and CLKDIVRL) is an integer value and can be arbitrarily chosen between 0 and 255
(effectively creating APB divided by 256 up to APB divided by 1). In addition, the Timer count interval is 16 bits in
split mode, so it can be anywhere between 0 and 65535 (setting the timer count to 0xFFFF causes the timer to
overflow in one clock). We can choose these values in any way such that they equal the required count of
2000000.

If we choose to set the TIMER0 APB prescaler to 40 (for a TIMER0 clock of 1.2 MHz):

Prescaler (CLKDIVRL) value from the reference manual:

16-bit reload value (HCCR) from the reference manual:

20000000
12

-------------------------- 1666666.67=

48000000
12 2

-------------------------- 2000000=

2000000
40

----------------------- 50000=

Fprescale

FAPB

256 CLKDIVRL–
---=

256 CLKDIVRL– 256 40– 216= =

Overflow Rate
FTIMER

65536 HCCR–
--=

65536 HCCR– 65536 50000– 15536= =

AN719

Rev. 0.1 15

6.3. Instructions
1. Launch AppBuilder 1.0.1 (default path: C:\SiLabs\Precision32_v1.0.1\AppBuilder).

2. Select New Project....

3. Select the project settings. SiM3U1xxSiM3U167-B-GQB1.0.1. Update the Name of the project
and Location to the workspace location. Press OK.

2

3

AN719

16 Rev. 0.1

4. Double-click on Clock Control.

5. Select the USB0 Oscillator.

6. Enable the USB0 Oscillator in the Properties window.

7. Click on the MUX radial button to select the USB0 oscillator as the AHB clock source. The diagram
updates to show the current AHB and APB clock frequencies. After selecting the USB0 clock as the AHB
source, an error appears indicating that the USB0 APB clock must be enabled.

4

7

5

6

AN719

Rev. 0.1 17

AN719

18 Rev. 0.1

8. Enable the APB clocks to the Ports (PBCFG0, PBSTD0, PBSTD1, PBSTD2, PBSTD3, PBHD4), TIMER0,
USB0, and FLASHCTRL0. The error and red highlight around USB0 disappear after enabling the USB0
APB clock.

8

AN719

Rev. 0.1 19

9. We can remove some errors and disable SWV since we’re not using it for this application. Double-click on
the crossbar 0 error in the Error List window.

10. Select Disabled in the Enable JTAG/SWV drop-down menu.

9

10

AN719

20 Rev. 0.1

11. Double-click on crossbar1.

12. Enable crossbar1.

11

12

AN719

Rev. 0.1 21

13. Click on the PB2.10 column.

14. Set PB2.10 to Push-Pull in the Properties window.

13

14

AN719

22 Rev. 0.1

15. Let’s fix the FLASHCTRL0 error in the Error List. Double-click on Peripherals.

16. Drag and drop FLASHCTRL0 to the Peripherals Canvas.

15

16

AN719

Rev. 0.1 23

17. Double-click on the error. The program will automatically jump to the FLASHCTRL0 Properties window.

18. Set the Flash Speed Mode field to 2. The error will disappear after hitting Enter.

17

18

AN719

24 Rev. 0.1

19. Let’s fix the last error in the Error List for the Watchdog Timer. Drag and drop WDTIMER0 to the
Peripherals Canvas.

19

AN719

Rev. 0.1 25

20. Double-click on the error. The program will automatically jump to the WDTIMER0 Properties window.

21. Disable the Watchdog Timer. The Error List should now be empty.

20
21

AN719

26 Rev. 0.1

22. Drag and drop TIMER0 to the Peripherals Canvas.

22

AN719

Rev. 0.1 27

23. Click on TIMER0.

24. Set the Desired Prescaler value to 1.2 MHz.

25. Select Split Timers for the Timer Mode.

23

25

24

AN719

28 Rev. 0.1

26. Select the Prescaler as the TIMER0 high clock source.

27. Start the high timer.

28. Set the Desired Overflow Frequency to 24 Hz (12 Hz x 2 for toggling the LED on and off). TIMER0 high
will be in auto-reload mode by default.

26

28
27

AN719

Rev. 0.1 29

29. We can view the generated code by clicking on gTIMER0.c in the source files list. AppBuilder used the
same values we calculated at the beginning of the lab for the prescaler (216) and reload values (15536).

29

AN719

30 Rev. 0.1

30. Click the TIMER0 Interrupts tab.

31. Enable High Timer Overflow interrupts.

30

31

AN719

Rev. 0.1 31

32. Click the Export button.

33. Verify Open After Export is automatically selected.

34. Press OK. The IDE will automatically open and have the AppBuilder project added to the workspace.

32

33

34

AN719

32 Rev. 0.1

AN719

Rev. 0.1 33

35. In the IDE, double-click on myTIMER0.c. The TIMER0H high overflow interrupt handler will be empty
.

The TIMER0 high overflow handler needs to perform two functions: 1) clear the TIMER0 high overflow interrupt
flag in the TIMER0 module, and 2) toggle the PB2.10 pin.

35

AN719

34 Rev. 0.1

36. Add the includes to the top of the myTIMER0.c file:

#include <SI32_PBSTD_A_Type.h>

#include <SI32_TIMER_A_Type.h>

#include <si32_device.h>

37. Because we already added the header files, we can use the auto-complete feature of the IDE to help us
find the correct functions. Move the cursor inside the interrupt handler, type in “SI32_TIMER_A_c”, and
press CTRL + SPACEBAR. This will open a window that shows all the available defines and functions
that start with SI32_TIMER_A _c. The “clear_high_overflow_interrupt” function will be the second
choice. Once the correct function is selected, fill in the correct base pointer for TIMER0 (SI32_TIMER_0).
The line of code should look like:

SI32_TIMER_A_clear_high_overflow_interrupt(SI32_TIMER_0);

36

37

AN719

Rev. 0.1 35

38. We can use the same process to enter in the second function, but we’ll search for it in the full list this time.
Move to a new line, type in “SI32_PBSTD_A”, and press CTRL + SPACEBAR. The list will show all
functions and defines for the PBSTD A module. We know we want a function that will toggle the pin, so
look for a function of the appropriate name (toggle_pins). Once the correct function is selected, fill in the
correct base pointer for PB2 (SI32_PBSTD_2) and the correct mask for PB2.10 (0x0400). The line of
code should look like:

SI32_PBSTD_A_toggle_pins(SI32_PBSTD_2, 0x0400);

38

AN719

36 Rev. 0.1

39. Build the code and start a debug session. Then start the program. The LED will blink at a 12 Hz rate.

40. Add a breakpoint in the TIMER0 handler in myTIMER0.c.

41. Select the Memory view.

42. Select the Peripheral view.

43. Open the PB2 register window by selecting PBSTD-2 in the Peripheral view.

44. Pressing the start program button repeatedly will update the PB2 pin value in the register window.

39
44

40
43

41

42

AN719

Rev. 0.1 37

6.4. Additional Notes: Migrating a Project
The AppBuilder migrate feature allows a project switch to a different version of the SDK, a different device family,
or device within the same family. To migrate a project:

1. Open the project in AppBuilder 1.0.1.

2. Go to the ProjectMigrate Project... menu selection.

3. Check the Change family, device, or rev checkbox to change the device family, device within the
selected family, or the revision of the device. This will prompt a message window that requests a new
export location.

4. Changes to the SDK version do not require a new export location.

5. Make any other desired modifications to the Migrate Project dialog and press OK.

2

3
4

5

AN719

38 Rev. 0.1

If the report option was not disabled, AppBuilder will generate a report of the migration operation. This report will
output a summary of the migration operation (fromto) and any potential Errors, Warnings, or Messages.

AN719

Rev. 0.1 39

NOTES:

AN719

40 Rev. 0.1

CONTACT INFORMATION
Silicon Laboratories Inc.

400 West Cesar Chavez
Austin, TX 78701
Tel: 1+(512) 416-8500
Fax: 1+(512) 416-9669
Toll Free: 1+(877) 444-3032

Please visit the Silicon Labs Technical Support web page:
https://www.silabs.com/support/pages/contacttechnicalsupport.aspx
and register to submit a technical support request.

Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.

https://www.silabs.com/support/pages/contacttechnicalsupport.aspx

