Video switch for CANAL-Plus decoder BA7630S / BA7630F

The BA7630S and BA7630F are decoder switching ICs for the scrambled broadcasts in France. The ICs include a 3input multiplexer, 2-input multiplexers with 6dB amplifiers, and a 9-bit serial-to-parallel converter.
These ICs greatly simplify decoder switching, and can be connected to a control microprocessor using just two lines.

- Applications

Video cassette recorders

- Features

1) All the switching functions required for SECAM CANAL plus decoder integrated onto one chip.
2) Built-in 9-bit serial-to-parallel converter for decoder and TV control reduces number of microprocessor wiring connections required.
3) Inputs have a sync-tip clamp.
4) The switch section can be used independently.
5) Low power consumption off a 5 V supply.

- Absolute maximum ratings $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Limits		Unit
Power supply voltage	V cc	9*1		V
Power dissipation	Pd	BA7630S	500*2	mW
		BA7630F	600*3	
Operating temperature	Topr	$-25 \sim+70$		${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg	$-55 \sim+125$		${ }^{\circ} \mathrm{C}$

*1 13V for switches 1 to 9 .
*2 Reduced by 5.0 mW for each increase in Ta of $1^{\circ} \mathrm{C}$ over $25^{\circ} \mathrm{C}$.
$* 3$ Reduced by 6.0 mW for each increase in Ta of $1^{\circ} \mathrm{C}$ over $25^{\circ} \mathrm{C}$.

- Recommended operating conditions ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Min.	Typ.	Max.	Unit
Power supply voltage	Vcc	4.5	5.0	5.5	V

-Block diagram

- Pin descriptions

Pin No.	Pin name	Pin No.	Pin name
1	IN 4	12 (15)	OUT 2
2	Vcc	13 (16)	GND
3	IN 1	14 (17)	SW 4 IN / OUT
4 (5)	RESET IN	15 (20)	SW 5 OUT
5 (6)	IN 2	16 (21)	SW 6 OUT
$6 \quad$ (7)	GND	17 (22)	SW 7 OUT
7 (8)	IN 3	18 (23)	SW 8 OUT
8 (9)	SW 1 IN / OUT	19 (24)	CLOCK IN
9 (10)	SW 2 IN / OUT	20 (26)	DATA IN
10 (13)	SW 3 IN / OUT	21 (27)	SW 9 OUT
11 (14)	OUT 3	22 (28)	OUT 1

Pin numbers in parentheses are for the BA7630F.
－Electrical characteristics（unless otherwise noted $\mathrm{Ta}=25^{\circ} \mathrm{C}$ and $\mathrm{Vcc}=5.0 \mathrm{~V}$ ）

Parameter	Symbol	Min．	Typ．	Max．	Unit	Conditions	Measurement Circuit
Supply current	Icc	-	28	40	mA	-	Fig． 1

〈Analog〉

Maximum output level	Vom	2.5	2.8	－	VP－p	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{THD}=0.5 \%$
Voltage gain 1	Gvi	－0．5	0	0.5	dB	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}^{\prime}=1.0 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$
Voltage gain 2	Gv2	5.5	6.0	6.5	dB	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{IN}}=1.0 \mathrm{~V}_{\text {P－P }}$
Frequency characteristic	G_{f}	－4．0	－1．5	＋ 1.0	dB	$\begin{aligned} & 10 \mathrm{MHz} / 1 \mathrm{MHz} \\ & \mathrm{~V} \mathrm{IN}=1.0 \mathrm{VP-P} \end{aligned}$
Interchannel crosstalk	Стм	－	－60	－45	dB	$\begin{aligned} & \mathrm{f}=4.43 \mathrm{MHz} \\ & \mathrm{VIN}=1.0 \mathrm{P} \cdot \mathrm{P} \end{aligned}$
SW ${ }_{1}$～SW ${ }_{4}$ switch level	$\mathrm{V}_{\text {TH1 }}$～ 4	1.0	2.0	3.0	V	－

Fig． 1

〈Digital〉

＂ H ＂input voltage	V_{H}	3.0	－	－	V	－	Fig． 3
＂L＂input voltage	VIL	－	－	1.0	V	－	
＂H＂input current	$1{ }_{1+}$	－	2	10	$\mu \mathrm{A}$	－	Fig． 2
＂L＂input current		－80	－100	－150	$\mu \mathrm{A}$	－	
＂H＂output leakage current 1	laH1～ 4	150	230	350	$\mu \mathrm{A}$	$\mathrm{Vcc}=12 \mathrm{~V}$	
＂H＂output leakage current 2	loh5～9	－	0	50	$\mu \mathrm{A}$	$\mathrm{Vcc}=12 \mathrm{~V}$	
＂L＂output voltage	VoL	－	0.1	0.5	V	$\mathrm{Icc}=2 \mathrm{~mA}$	Fig． 1
Maximum clock frequency	fmax．	250	500	－	kHz	－	
Setup time	tsu	－	0.1	1.0	$\mu \mathrm{s}$	－	

- Measurement circuits

BA7630S

Fig. 1

BA7630S

Fig. 2

BA7630S

Fig. 3

- Measurement conditions

Parameter	Symbol	Switch setting											Measure- ment method
		SWA	SWB	SWc	SWD	SWE	SWF	SWG	SWH	SWI	SWJ	SWk	
Current dissipation	Icc	2	2	2	2	2	2	2	2	\times	\times	\times	-
Maximum output level	Vom1-1 Vom2-1 Vom3-1	$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 2 \end{aligned}$	$\begin{gathered} 1 \\ 2 \\ \times \end{gathered}$	$\begin{aligned} & \times \\ & \times \\ & \times \end{aligned}$	$\begin{aligned} & \times \\ & \times \\ & \times \end{aligned}$	$\begin{aligned} & \times \\ & \times \\ & \times \end{aligned}$	$\begin{aligned} & \times \\ & \times \\ & \times \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$	Note 1
	Vom1-2 Vom3-2	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	$\stackrel{x}{x}$	$\begin{aligned} & \times \\ & \times \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & \times \\ & \times \end{aligned}$	$\stackrel{\times}{\times}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\stackrel{\times}{\times}$	
	$\begin{aligned} & \text { Vom2-3 } \\ & \text { Vom4-3 } \end{aligned}$	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & \times \\ & \times \end{aligned}$	$\begin{aligned} & \times \\ & \times \end{aligned}$	$\begin{aligned} & \times \\ & \times \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & \times \\ & \times \end{aligned}$	$\begin{aligned} & x \\ & \times \end{aligned}$	
Voltage gain 1	Gv11-2 Gv13-2 Gv12-3 $\mathrm{G}_{\mathrm{v} 1} 4-3$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 1 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & \times \\ & \times \\ & \times \\ & \times \end{aligned}$	$\begin{aligned} & x \\ & x \\ & x \\ & x \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & \times \\ & \times \end{aligned}$	$\begin{gathered} \times \\ \times \\ 1 \\ 2 \end{gathered}$	$\begin{aligned} & \times \\ & \times \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & \times \\ & \times \end{aligned}$	$\begin{aligned} & \times \\ & \times \\ & \times \\ & \times \end{aligned}$	Note 2
Voltage gain 2	Gv21-1 Gv22-1 Gv23-1	$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & \times \end{aligned}$	$\begin{aligned} & x \\ & \times \\ & \times \end{aligned}$	$\begin{aligned} & x \\ & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & \times \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \\ & x \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	
Frequency characteristics	$\begin{aligned} & \mathrm{G}_{\mathrm{f}} 1-1 \\ & \mathrm{G}_{\mathrm{f}} 2-1 \\ & \mathrm{G} \ddagger 3-1 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 2 \end{aligned}$	$\begin{gathered} 1 \\ 2 \\ \times \end{gathered}$	$\begin{aligned} & \times \\ & \times \\ & \times \end{aligned}$	$\begin{aligned} & \times \\ & \times \\ & \times \end{aligned}$	$\begin{aligned} & \times \\ & \times \\ & \times \end{aligned}$	$\begin{aligned} & \times \\ & \times \\ & \times \end{aligned}$	2 2 2	Note 3
	$\begin{aligned} & \mathrm{G}_{\mathrm{f} 1-2} \\ & \mathrm{G} 3-2 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & \times \\ & \times \end{aligned}$	$\begin{aligned} & \times \\ & \times \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & \times \\ & \times \end{aligned}$	$\begin{aligned} & \times \\ & \times \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & \times \\ & \times \end{aligned}$	
	$\begin{aligned} & \mathrm{G}+2-3 \\ & \mathrm{G} 44-3 \end{aligned}$	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & \times \\ & \times \end{aligned}$	$\begin{aligned} & \times \\ & \times \end{aligned}$	$\begin{aligned} & \times \\ & \times \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & \times \\ & \times \end{aligned}$	$\begin{aligned} & \times \\ & \times \end{aligned}$	
Interchannel crosstalk	Стм1-1-2 Стм1-1-3 Стм2-1-1 Стм2-1-3 Стм3-1-1 Стм3-1-2	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 1 \\ & 2 \\ & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & 2 \\ & 1 \\ & 2 \\ & 1 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & x \\ & \times \end{aligned}$	$\begin{aligned} & \times \\ & \times \end{aligned}$	$\begin{aligned} & \times \\ & \times \end{aligned}$	$\begin{aligned} & \times \\ & \times \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Note 4
	$\begin{aligned} & \text { Стм1-2-3 } \\ & \text { Стм3-2-1 } \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\stackrel{x}{x}$	$\begin{aligned} & \times \\ & \times \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\stackrel{\times}{\times}$	$\stackrel{\times}{\times}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \times \\ & \times \end{aligned}$	
	$\begin{aligned} & \text { Стм2-3-4 } \\ & \text { Стм4-3-2 } \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & \times \\ & \times \end{aligned}$	$\begin{aligned} & \times \\ & \times \end{aligned}$	$\begin{aligned} & \times \\ & \times \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \times \\ & \times \end{aligned}$	$\begin{aligned} & \times \\ & \times \end{aligned}$	

The measurements in the above table were made with switching voltage levels for SW_{1} to SW_{4} of " L " $=1 \mathrm{~V}$, and " H " $=3 \mathrm{~V}$.
Note 1: Connect distortion meters to the outputs. Adjust the input level so that the output distortion is 0.5% for a $\mathrm{f}=1 \mathrm{kHz}$ sine wave input. This output voltage is the maximum output level Vom (VP-p).
Note 2: Input a $\mathrm{f}=1 \mathrm{MHz}, 1 \mathrm{Vp-p}$ sine wave. The voltage gain $\mathrm{Gv}=20 \log$ Vout / Vin (dB).
Note 3: Input a $f=1 \mathrm{MHz}$ and $10 \mathrm{MHz}, 1 \mathrm{Vp-p}$ sine wave. The frequency characteristic $G_{f}=20 \log \operatorname{Vout}(f=10 M) / \operatorname{Vout}(f=1 M)(d B)$
Note 4: Input a $\mathrm{f}=4.43 \mathrm{MHz}, 1 \mathrm{VP}-\mathrm{P}$ sine wave. OdB amplifier SW crosstalk is Стмо, and the 6 dB amplifier SW crosstalk is Стмя.
Стмо $=20$ log Vout / Vin (dB)
Стм6 $=20$ log Vout $/ \mathrm{VIn}+6$ (dB)

- Circuit operation

Digital block truth table

INPUT			OUTPUT	Note
Reset	Clock	Data	SW 1SW9	
H	\times	\times	H...............................H	-
L	L	\times	SW1-0...................SW9-0	-
L	H	\times	SW1-0..................SW9-0	-
L	\uparrow	H	SW1-0...................SW9-0	Data "L" sent to internal shift register
L	\uparrow	L	SW 1 -0.................. SW ${ }_{9-0}$	Data "H" sent to internal shift register
L	\downarrow	L	SW1-0...................SW9-0	Internal shift register data unchanged
L	\downarrow	H		Contents of internal shift register sent to internal latch

Note 1: H: high level
Note 2: L: low level
Note 3: \times : either H or L
Note 4: \uparrow : L to H transition
Note 5: \downarrow : H to L transition
Note 6: SW1-0 to SW9-0: SW 1 to SW_{9} levels before establishing the input conditions shown in the table.
Note 7: SW1-N to SW9-N nearest clock \downarrow transition.

Analog truth table
(1) OUT1 switch

SW $_{1}$	SW $_{2}$	RESET	SELECT
L	L	H	IN1
L	H	H	IN2
H	L	H	IN3
H	H	H	IN3

(2) OUT2 switch

SW $_{3}$	RESET	SELECT
L	H	IN1
H	H	IN3

(3) OUT3 switch

SW $_{4}$	RESET	SELECT
L	H	IN2
H	H	IN4

Note: When using the switches independently without the digital block, the RESET pin must be set to " H ".

- Digital circuit operation
(1) Introduction

The BA7630S has 9-bit serial-to-parallel converter and latch circuit that has been included to expand the number of microprocessor output ports. The breakdown voltage of the output pins is 13 V , so switch them in the range 0 to 12 V . In addition to controlling the BA7630S switching block, these outputs can be used to control audio switching, scrambling decoders, and television sets.
(2) Using the serial-to-parallel convertor block

Signal input is basically done using clock and date pulses. As shown in Fig.10, the date is read on the rising edge of the clock pulses. If the date is " H " on the rising edge of the clock pulse, a "L" data bit is input to the shift register, and if the data is " L " on the rising edge of the clock pulse, a " H " data bit is input to the shift register. The shift register is sequentially incremented by the bit corresponding to SW . Data in excess of 9 bits is sequentially discarded.
If the data is " H " on a falling edge of the clock, the contents of the shift register are read into the internal latch, and simultaneously output to the output port (the data polarity is inverted on output). This output is maintained until the latch is setup again.
To reset, set the RESET pin to " H ". The internal shift register and latch contents go low (latch output all " H "), for the duration that RESET is held high.

At points 1 to 4 data is input to the shift register.
At point 5 the contents of the shift register are transferred to the latch and simultaneously output.

Fig. 4 CLK and DATA relationship

Fig. 5 Digital block
(3) Pulse timing

The pulse timing diagrams are given below.

Fig. 6 Clock rising edge and data relationship (setup time)

Fig. 7 Clock falling edge and data relationship (setup time)

Fig. 8 Reset and output relationship (reset transmission time)

Fig. 9 Clock falling edge and output relationship (latch transmission time)

- Timing chart

Fig. 10

- Application examples
(1) Analog block

BA7630S pin layout

Fig. 11
(2) Digital block

Fig. 12

- Electrical characteristic curves

Fig. 13 Frequency characteristic(OUT1)

Fig. 16 Crosstalk characteristic (OUT2 and OUT3)

Fig. 14 Crosstalk characteristic (OUT1)

Fig. 15 Frequency characteristic (OUT2 and OUT3)

- External dimensions (Units: mm)

