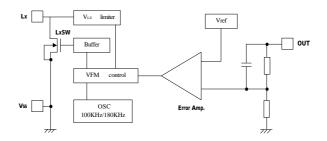
ML63 Series DC-DC Converter

* Application

- ◆ Power Source of Portable Products
- ◆ Palmtops
- ◆ Portable Cameras and Video Recorders
- ♦ Wireless mouse and keyboard

* Features


- Small number of external components: inductor, diode and capacitor.
- Ultra low input current: Typical 0.6uA (at no load, 1.5V input)
- Oscillator: $100 \, \text{kHz}$, $180 \, \text{kHz} (\pm 15\%)$
- Low ripple and noise
- Low startup voltage: Max 0.9V (with 1mA input)
- High Efficiency: Typical 80%
- Package Available:
 SOT-89 (500mW) & TO-92 (300mW)

* General Description

The ML63 is a group of VFM Step-up DC/DC converter IC with ultra-low supply current by CMOS process.

It consists of an oscillator, a VFM control circuit, a Lx switch driver transistor, a reference voltage unit, an error amplifier for voltage detection and an Lx switch protection circuit. It is suitable for use with battery-powered instruments with low noise and ultra low supply current.

* Block Diagram

* Absolute Maximum Ratings

Parameter		Symbol	Ratings	Units
Input Voltage		$V_{\rm IN}$	8	V
Output Current		Iout	500	mA
Output Voltage		Vout	V_{SS} -0.3 ~ V_{IN} +0.3	V
Continuous		D.	500	mW/
Total Power Dissipation	TO-92	Pd	300	mW
Operating Ambient Temperature		Topr	-30 ~ +80	°C
Storage Temperature		Tstg	-40 ~ +125	°C

* Electrical Characteristics

VIN = 1.6V, IOUT = 10mA, Ta = 25 °C, unless otherwise provided.

ML63271 / ML63271A VOUT=2.7V

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Output Voltage	V_{OUT}		2.633	2.700	2.767	V
Startup Voltage	V_{START}	$I_{OUT}=ImA$		0.8	0.9	V
Hold-on Voltage	V_{HOLD}	$I_{OUT}=ImA$	0.7			V
Oscillator Frequency	F_{OSC}	TYPE = ML63271A	85	100	115	KHz
Oscillator Frequency		TYPE = ML63271	153	180	207	KHz
Input Current 1	I_{INI}	At no load		8	12	иA
Input Current 2	I_{IN2}	$V_{IN} = 3.2V$		6		иA
Lx Switching Current	I_{LX}	V_{LX} =0.4V, V_{IN} =2.55V	40			mA
Lx Leakage Current	I_{LXLEAK}	$V_{IN}=3.5V, V_{LX}=6.0V$			0.5	иA
Oscillator Duty Cycle	MAXDTY	Measuring Lx Waveform		75		%
Efficiency	EFF			80		%
Input Voltage	V_{IN}				8	V

VIN = 1.8V, IOUT = 10mA, Ta = 25 °C, unless otherwise provided.

ML63301 / ML63301A VOUT=3.0V

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Output Voltage	V_{OUT}		2.925	3.000	3.075	V
Startup Voltage	V_{START}	$I_{OUT}=ImA$		0.8	0.9	V
Hold-on Voltage	V_{HOLD}	$I_{OUT}=ImA$	0.7			V
Oscillator Frequency	F_{OSC}	TYPE = ML63301A	85	100	115	KHz
Oscillator Frequency		TYPE = ML63301	153	180	207	KHz
Input Current 1	I_{INI}	At no load		8	12	иA
Input Current 2	I_{IN2}	$V_{IN} = 3.5V$		6		иA
Lx Switching Current	I_{LX}	$V_{LX}=0.4V, V_{IN}=2.85V$	40			mA
Lx Leakage Current	I_{LXLEAK}	$V_{IN}=3.5V, V_{LX}=6.0V$			0.5	иA
Oscillator Duty Cycle	MAXDTY	Measuring Lx Waveform		75		%
Efficiency	EFF			80		%
Input Voltage	V_{IN}				8	V

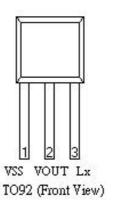
VIN = 1.8V, IOUT = 10mA, Ta = 25 °C, unless otherwise provided.

ML63501 VOUT=5.0V

MILIOSSOI	1001-3.01					
Parameter	Symbol	Conditions	Min	Тур	Max	Units
Output Voltage	V_{OUT}		4.925	5.000	5.075	V
Startup Voltage	V_{START}	$I_{OUT}=1$ mA		0.8	0.9	V
Hold-on Voltage	V_{HOLD}	$I_{OUT}=1$ mA	0.7			V
Oscillator Frequency	F_{OSC}		85	100	115	KHz
Input Current 1	I_{INI}	At no load		8	12	иA
Input Current 2	I_{IN2}	$V_{IN} = 3.5V$		6		иA
Lx Switching Current	I_{LX}	$V_{LX}=0.4V, V_{IN}=2.85V$	40			mA
Lx Leakage Current	I_{LXLEAK}	$V_{IN}=3.5V, V_{LX}=6.0V$			0.5	иA
Oscillator Duty Cycle	MAXDTY	Measuring Lx Waveform		75		%
Efficiency	EFF			80		%
Input Voltage	V_{IN}				8	V

Minilogic Device Corporation

* Pin Configuration

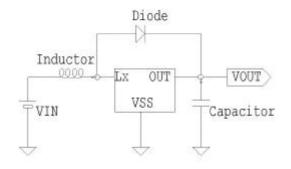

SOT-89:

Pin Number Pin Name		Description		
1 VSS		Ground		
2 VOUT Voltage Output/In		Voltage Output/Internal power supply		
3	Lx	Switch		

TO-92:

Pin Number Pin Name		Description
1 VSS		Ground
2 VOUT		Voltage Output/Internal power supply
3	Lx	Switch

* Application Notes

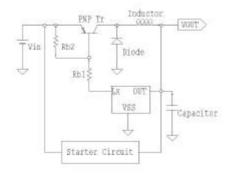

Note on Use

- 1. It is recommended to use capacitor with a capacity of 10uF or more for good frequency characteristics, otherwise it will lead to high output ripple. Tantalum type capacitor is recommended. As there may be the case where a spike-shaped high voltage is generated by the inductor when Lx transistor is turned off, the operating voltage of capacitor should be at least three times of the output set voltage so as to avoid over-voltage damage.
- 2. It is recommended to use inductor has sufficiently small d.c. resistance, large allowable current and hardly reaches magnetic saturation. When the inductance of inductor is small, there may be the case that the inductor current exceeds the absolute maximum ratings at the maximum load condition.
- 3. It is recommended to place external components as close as possible to the DC/CD converter so as to minimize the interconnection parasitic between components and DC/DC converter, especially for the capacitor connected to VOUT pin. It is recommended to place 0.1uF ceramic capacitor between VOUT pin and VSS pin.
- 4. It is recommended to provide sufficient grounding for VSS pin. This will help to stable the zero level within DC/DC converter induced by the switching current level variation during operation. And the insufficient grounding may result in unstable operation of DC/DC converter.

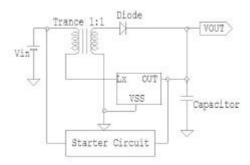
Minilogic Device Corporation

Typical Application Circuit

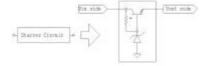
1. Step-up Circuit


Typical Value:

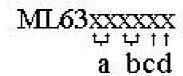
Inductor: 270uH


Capacitor: Aluminium type, 4.7uF. Diode: Schottky Diode with forward

voltage drop of 0.2V or less


2. Step-down Circuit

3. Step-up/Step-down Circuit



Note: The starter circuit is necessary for above circuits.

* Ordering Information

Designator	Description
	Output Voltage
	eg. 27=2.7V
a	30=3.0V
	50=5.0V
	Oscillator Frequency
b	1 = 180 KHz
	1A = 100KHz
	Package Type
С	P = SOT-89
	T = TO-92
	Device Orientation
	R = Embossed Tape
d	(Orientation of Device : Right)
u	L = Embossed Tape
	(Orientation of Device : Left)
	B = Bag (TO-92)

* History of Revision

REV	DESCRIPTION	DATE
	First Official Specification	23/10/02

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use.