Data Sheet December 2001 # Radiation Hardened, SEGR Resistant N-Channel Power MOSFETs The Discrete Products Operation of Fairchild has developed a series of Radiation Hardened MOSFETs specifically designed for commercial and military space applications. Enhanced Power MOSFET immunity to Single Event Effects (SEE), Single Event Gate Rupture (SEGR) in particular, is combined with 100 krads of total dose hardness to provide devices which are ideally suited to harsh space environments. The dose rate and neutron tolerance necessary for military applications have not been sacrificed. The Fairchild portfolio of SEGR resistant radiation hardened MOSFETs includes N-Channel and P-Channel devices in a variety of voltage, current and on-resistance ratings. Numerous packaging options are also available. This MOSFET is an enhancement-mode silicon-gate power field-effect transistor of the vertical DMOS (VDMOS) structure. It is specially designed and processed to be radiation tolerant. The MOSFET is well suited for applications exposed to radiation environments such as switching regulation, switching converters, motor drives, relay drivers and drivers for high-power bipolar switching transistors requiring high speed and low gate drive power. This type can be operated directly from integrated circuits. Reliability screening is available as either commercial, TXV equivalent of MIL-PRF-19500, or Space equivalent of MIL-PRF-19500. Contact Fairchild for any desired deviations from the data sheet. Formerly available as type TA17699W. # **Ordering Information** | RAD LEVEL | SCREENING LEVEL | PART NUMBER/BRAND | |-----------|-----------------|-------------------| | 10K | Commercial | FSYE33A0D1 | | 100K | TXV | FSYE33A0R3 | | 100K | Space | FSYE33A0R4 | #### Features - 5A, 400V, $r_{DS(ON)} = 1.2\Omega$ - · Total Dose - Meets Pre-RAD Specifications to 100 krad(Si) - · Single Event - Safe Operating Area Curve for Single Event Effects - SEE Immunity for LET of 36MeV/mg/cm<sup>2</sup> with V<sub>DS</sub> up to 80% of Rated Breakdown and V<sub>GS</sub> of 10V Off-Bias - · Dose Rate - Typically Survives 3E9 rad (Si)/s at 80% BV<sub>DSS</sub> - Typically Survives 2E12 if Current Limited to IDM - · Photo Current - 6nA Per-rad(Si)/s Typically - Neutron - Maintain Pre-RAD Specifications for 3E12 Neutrons/cm<sup>2</sup> - Usable to 3E13 Neutrons/cm<sup>2</sup> ## Symbol ## **Packaging** SMD.5 # FSYE33A0D, FSYE33A0R # **Absolute Maximum Ratings** $T_C = 25^{\circ}C$ , Unless Otherwise Specified | | FSYE33A0D, FSYE33A0R | UNITS | |-------------------------------------------------------------------|----------------------|-------| | Drain to Source Voltage | 3 400 | V | | Drain to Gate Voltage ( $R_{GS} = 20k\Omega$ ) | 400 | V | | Continuous Drain Current | | | | $T_C = 25^{\circ}C$ | 5 | Α | | $T_C = 100^{\circ}C$ | 3 | Α | | Pulsed Drain Current | 15 | Α | | Gate to Source Voltage | ±20 | V | | Maximum Power Dissipation | | | | $T_C = 25^{\circ}C$ | 75 | W | | $T_C = 100^{\circ}C$ $P_T$ | 30 | W | | Linear Derating Factor | 0.60 | W/°C | | Single Pulsed Avalanche Current, L = $100\mu H$ (See Test Figure) | 15 | Α | | Continuous Source Current (Body Diode) | 5 | Α | | Pulsed Source Current (Body Diode) | 1 15 | Α | | Operating and Storage Temperature | -55 to 150 | °C | | Lead Temperature (During Soldering) | 300 | °C | CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. # **Electrical Specifications** $T_C = 25^{\circ}C$ , Unless Otherwise Specified | PARAMETER | SYMBOL | TEST CONDITIONS | | MIN | TYP | MAX | UNITS | |-------------------------------------|------------------------|---------------------------------------------------------------------------------|-------------------------|-----|-----|------|-------| | Drain to Source Breakdown Voltage | BV <sub>DSS</sub> | $I_D = 1mA$ , $V_{GS} = 0V$ | | 400 | - | - | V | | Gate Threshold Voltage | V <sub>GS(TH)</sub> | $V_{GS} = V_{DS}$ | $T_C = -55^{\circ}C$ | - | - | 5.0 | V | | | | I <sub>D</sub> = 1mA | $T_{C} = 25^{\circ}C$ | 1.5 | - | 4.0 | V | | | | | $T_{C} = 125^{\circ}C$ | 0.5 | - | - | V | | Zero Gate Voltage Drain Current | I <sub>DSS</sub> | V <sub>DS</sub> = 320V, | $T_{C} = 25^{\circ}C$ | - | - | 25 | μА | | | | V <sub>GS</sub> = 0V | $T_{C} = 125^{\circ}C$ | - | - | 250 | μА | | Gate to Source Leakage Current | I <sub>GSS</sub> | V <sub>GS</sub> = ±20V | $T_{C} = 25^{\circ}C$ | - | - | 100 | nA | | | | | $T_{C} = 125^{\circ}C$ | - | - | 200 | nA | | Drain to Source On-State Voltage | V <sub>DS(ON)</sub> | V <sub>GS</sub> = 12V, I <sub>D</sub> = 5A | | - | - | 6.6 | V | | Drain to Source On Resistance | r <sub>DS(ON)12</sub> | I <sub>D</sub> = 3A,<br>V <sub>GS</sub> = 12V | $T_{C} = 25^{\circ}C$ | - | 1.0 | 1.2 | Ω | | | | | $T_{C} = 125^{\circ}C$ | - | - | 2.4 | Ω | | Turn-On Delay Time | t <sub>d(ON)</sub> | $V_{DD} = 200V, I_D = 5A,$ $R_L = 40\Omega, V_{GS} = 12V,$ $R_{GS} = 7.5\Omega$ | | - | - | 20 | ns | | Rise Time | t <sub>r</sub> | | | - | - | 25 | ns | | Turn-Off Delay Time | t <sub>d(OFF)</sub> | | | - | - | 55 | ns | | Fall Time | tf | | | - | - | 25 | ns | | Total Gate Charge | Q <sub>g(TOT)</sub> | V <sub>GS</sub> = 0V to 20V | V <sub>DD</sub> = 200V, | - | 55 | - | nC | | Gate Charge at 12V | Q <sub>g(12)</sub> | $V_{GS} = 0V \text{ to } 12V$ $I_D = 5A$ | | - | 33 | 36 | nC | | Threshold Gate Charge | Q <sub>g(TH)</sub> | V <sub>GS</sub> = 0V to 2V | | - | 2 | - | nC | | Gate Charge Source | Q <sub>gs</sub> | | | - | 5 | 7 | nC | | Gate Charge Drain | Q <sub>gd</sub> | | | - | 15 | 18 | nC | | Plateau Voltage | V <sub>(PLATEAU)</sub> | I <sub>D</sub> = 5A, V <sub>DS</sub> = 15V | | - | 6 | - | V | | Input Capacitance | C <sub>ISS</sub> | V <sub>DS</sub> = 25V, V <sub>GS</sub> = 0 | V, | - | 750 | - | pF | | Output Capacitance | C <sub>OSS</sub> | f = 1MHz | | - | 105 | - | pF | | Reverse Transfer Capacitance | C <sub>RSS</sub> | | | - | 26 | - | pF | | Thermal Resistance Junction to Case | $R_{ heta JC}$ | | | - | - | 1.67 | °C/W | ## FSYE33A0D, FSYE33A0R ## **Source to Drain Diode Specifications** | PARAMETER | SYMBOL | TEST CONDITIONS | MIN | TYP | MAX | UNITS | |-----------------------|-----------------|-------------------------------------------|-----|-----|-----|-------| | Forward Voltage | V <sub>SD</sub> | I <sub>SD</sub> = 5A | 0.6 | - | 1.8 | V | | Reverse Recovery Time | t <sub>rr</sub> | $I_{SD} = 5A$ , $dI_{SD}/dt = 100A/\mu s$ | - | - | 520 | ns | ## **Electrical Specifications up to 100 krad** $T_C = 25^{\circ}C$ , Unless Otherwise Specified | PARAMETER | | SYMBOL | TEST CONDITIONS | MIN | MAX | UNITS | |---------------------------------|--------------|-----------------------|---------------------------------------------|-----|-----|-------| | Drain to Source Breakdown Volts | (Note 3) | BV <sub>DSS</sub> | $V_{GS} = 0$ , $I_D = 1mA$ | 400 | - | V | | Gate to Source Threshold Volts | (Note 3) | V <sub>GS(TH)</sub> | $V_{GS} = V_{DS}$ , $I_D = 1mA$ | 1.5 | 4.0 | V | | Gate to Body Leakage | (Notes 2, 3) | I <sub>GSS</sub> | $V_{GS} = \pm 20V, V_{DS} = 0V$ | - | 100 | nA | | Zero Gate Leakage | (Note 3) | I <sub>DSS</sub> | V <sub>GS</sub> = 0, V <sub>DS</sub> = 320V | - | 25 | μΑ | | Drain to Source On-State Volts | (Notes 1, 3) | V <sub>DS(ON)</sub> | V <sub>GS</sub> = 12V, I <sub>D</sub> = 5A | - | 6.6 | V | | Drain to Source On Resistance | (Notes 1, 3) | r <sub>DS(ON)12</sub> | $V_{GS} = 12V, I_D = 3A$ | - | 1.2 | Ω | #### NOTES: - 1. Pulse test, 300µs Max. - 2. Absolute value. - 3. Insitu Gamma bias must be sampled for both $V_{GS}$ = 12V, $V_{DS}$ = 0V and $V_{GS}$ = 0V, $V_{DS}$ = 80% BV<sub>DSS</sub>. ## Single Event Effects (SEB, SEGR) Note 4 | | | ENVIRONMENT (NOTE 5) | | | APPLIED | (NOTE 6) | |------------------------------------------|--------|----------------------|----------------------------|----------------------|-----------------------------|-------------------------------------| | TEST | SYMBOL | ION<br>SPECIES | TYPICAL LET<br>(MeV/mg/cm) | TYPICAL<br>RANGE (μ) | V <sub>GS</sub> BIAS<br>(V) | MAXIMUM<br>V <sub>DS</sub> BIAS (V) | | Single Event Effects Safe Operating Area | SEESOA | Ni | 26 | 43 | -15 | 400 | | | | Ni | 26 | 43 | -20 | 360 | | | | Br | 37 | 36 | -5 | 400 | | | | Br | 37 | 36 | -10 | 320 | | | | Br | 37 | 36 | -15 | 200 | | | | Br | 37 | 36 | -20 | 80 | #### NOTES: - 4. Testing conducted at Brookhaven National Labs; sponsored by Naval Surface Warfare Center (NSWC), Crane, IN. - 5. Fluence = $1E5 \text{ ions/cm}^2$ (typical), T = $25^{\circ}$ C. - 6. Does not exhibit Single Event Burnout (SEB) or Single Event Gate Rupture (SEGR). ## Performance Curves Unless Otherwise Specified FIGURE 1. SINGLE EVENT EFFECTS SAFE OPERATING AREA FIGURE 2. TYPICAL DRAIN INDUCTANCE REQUIRED TO LIMIT GAMMA DOT CURRENT TO IAS # Performance Curves Unless Otherwise Specified (Continued) FIGURE 3. MAXIMUM CONTINUOUS DRAIN CURRENT vs TEMPERATURE FIGURE 4. FORWARD BIAS SAFE OPERATING AREA FIGURE 5. BASIC GATE CHARGE WAVEFORM FIGURE 6. TYPICAL NORMALIZED r<sub>DS(ON)</sub> vs JUNCTION TEMPERATURE FIGURE 7. NORMALIZED MAXIMUM TRANSIENT THERMAL RESPONSE ©2001 Fairchild Semiconductor Corporation FSYE33A0R, FSYE33A0R, Rev. B ## Performance Curves Unless Otherwise Specified (Continued) FIGURE 8. UNCLAMPED INDUCTIVE SWITCHING ## Test Circuits and Waveforms FIGURE 9. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 10. UNCLAMPED ENERGY WAVEFORMS FIGURE 11. RESISTIVE SWITCHING TEST CIRCUIT FIGURE 12. RESISTIVE SWITCHING WAVEFORMS # FSYE33A0D, FSYE33A0R # Screening Information Screening is performed in accordance with the latest revision in effect of MIL-PRF-19500, (Screening Information Table). # Delta Tests and Limits (JANTXV Equivalent, JANS Equivalent) T<sub>C</sub> = 25°C, Unless Otherwise Specified | PARAMETER | SYMBOL | TEST CONDITIONS | MAX | UNITS | |---------------------------------|---------------------|------------------------------------|---------------|-------| | Gate to Source Leakage Current | I <sub>GSS</sub> | $V_{GS} = \pm 20V$ | ±20 (Note 7) | nA | | Zero Gate Voltage Drain Current | I <sub>DSS</sub> | V <sub>DS</sub> = 80% Rated Value | ±25 (Note 7) | μΑ | | Drain to Source On Resistance | r <sub>DS(ON)</sub> | $T_C = 25^{\circ}C$ at Rated $I_D$ | ±20% (Note 8) | Ω | | Gate Threshold Voltage | V <sub>GS(TH)</sub> | I <sub>D</sub> = 1.0mA | ±20% (Note 8) | V | #### NOTES: - 7. Or 100% of Initial Reading (whichever is greater). - 8. Of Initial Reading. ## **Screening Information** | TEST | JANTXV EQUIVALENT | JANS EQUIVALENT | |---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------| | Unclamped Inductive Switching | V <sub>GS(PEAK)</sub> = 15V, L = 0.1mH; Limit = 15A | V <sub>GS(PEAK)</sub> = 15V, L = 0.1mH; Limit = 15A | | Thermal Response | $t_H = 10ms; V_H = 25V; I_H = 1A; LIMIT = 74mV$ | t <sub>H</sub> = 10ms; V <sub>H</sub> = 25V; I <sub>H</sub> = 1A; LIMIT = 74mV | | Gate Stress | V <sub>GS</sub> = 30V, t = 250μs | V <sub>GS</sub> = 30V, t = 250μs | | Pind | Optional | Required | | Pre Burn-In Tests (Note 9) | MIL-PRF-19500 Group A,<br>Subgroup 2 (All Static Tests at 25°C) | MIL-PRF-19500 Group A,<br>Subgroup 2 (All Static Tests at 25°C) | | Steady State Gate<br>Bias (Gate Stress) | MIL-PRF-750, Method 1042, Condition B<br>V <sub>GS</sub> = 80% of Rated Value,<br>T <sub>A</sub> = 150°C, Time = 48 hours | MIL-PRF-750, Method 1042, Condition B<br>$V_{GS} = 80\%$ of Rated Value,<br>$T_A = 150^{O}$ C, Time = 48 hours | | Interim Electrical Tests (Note 9) | All Delta Parameters Listed in the Delta Tests and Limits Table | All Delta Parameters Listed in the Delta Tests and Limits Table | | Steady State Reverse<br>Bias (Drain Stress) | MIL-PRF-750, Method 1042, Condition A<br>V <sub>DS</sub> = 80% of Rated Value,<br>T <sub>A</sub> = 150°C, Time = 160 hours | MIL-PRF-750, Method 1042, Condition A $V_{DS} = 80\%$ of Rated Value, $T_A = 150^{0}$ C, Time = 240 hours | | PDA | 10% | 5% | | Final Electrical Tests (Note 9) | MIL-PRF-19500, Group A, Subgroup 2 | MIL-PRF-19500, Group A,<br>Subgroups 2 and 3 | ## NOTE: ### **Additional Tests** | PARAMETER | SYMBOL | TEST CONDITIONS | MAX | UNITS | |---------------------|------------------|-------------------------------------------------------------------|------|-------| | Safe Operating Area | SOA | V <sub>DS</sub> = 200V, t = 10ms | 0.43 | Α | | Thermal Impedance | ΔV <sub>SD</sub> | t <sub>H</sub> = 100ms; V <sub>H</sub> = 25V; I <sub>H</sub> = 1A | 165 | mV | <sup>9.</sup> Test limits are identical pre and post burn-in. ## Rad Hard Data Packages - Fairchild Power Transistors ### TXV Equivalent # 1. RAD HARD TXV EQUIVALENT - STANDARD DATA PACKAGE - A. Certificate of Compliance - B. Assembly Flow Chart C. Preconditioning - Attributes Data Sheet D. Group A - Attributes Data Sheet E. Group B - Attributes Data Sheet F. Group C - Attributes Data Sheet G. Group D - Attributes Data Sheet # 2. RAD HARD TXV EQUIVALENT - OPTIONAL DATA PACKAGE - A. Certificate of Compliance - B. Assembly Flow Chart - C. Preconditioning Attributes Data Sheet - Pre and Post Burn-In Read and Record Data D. Group A - Attributes Data SheetE. Group B - Attributes Data Sheet Pre and Post Read and Record Data for Intermittent Operating Life (Subgroup B3) Bond Strength Data (Subgroup B3) Pre and Post High Temperature Operating Life Read and Record Data (Subgroup B6) F. Group C - Attributes Data Sheet Pre and Post Read and Record Data for Intermittent Operating Life (Subgroup C6) Bond Strength Data (Subgroup C6) G. Group D - Attributes Data Sheet - Pre and Post RAD Read and Record Data #### Class S - Equivalents # 1. RAD HARD "S" EQUIVALENT - STANDARD DATA PACKAGE A. Certificate of Compliance B. Serialization Records C. Assembly Flow Chart D. SEM Photos and Report E. Preconditioning - Attributes Data Sheet - HTRB - Hi Temp Gate Stress Post Reverse Bias Data and Delta Data - HTRB - Hi Temp Drain Stress Post Reverse Bias Delta Data F. Group A - Attributes Data Sheet G. Group B - Attributes Data Sheet H. Group C - Attributes Data Sheet I. Group D - Attributes Data Sheet # 2. RAD HARD MAX. "S" EQUIVALENT - OPTIONAL DATA PACKAGE A. Certificate of Compliance B. Serialization Records C. Assembly Flow Chart D. SEM Photos and Report E. Preconditioning - Attributes Data Sheet HTRB - Hi Temp Gate Stress Post Reverse Bias Data and Delta Data HTRB - Hi Temp Drain Stress Post Reverse Bias Delta Data - X-Ray and X-Ray Report F. Group A - Attributes Data Sheet - Subgroups A2, A3, A4, A5 and A7 Data G. Group B - Attributes Data Sheet - Subgroups B1, B3, B4, B5 and B6 Data H. Group C - Attributes Data Sheet - Subgroups C1, C2, C3 and C6 Data I. Group D - Attributes Data Sheet - Pre and Post Radiation Data #### **TRADEMARKS** The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks. SMART START™ $VCX^{TM}$ FAST ® OPTOLOGIC™ STAR\*POWER™ FASTr™ Bottomless™ OPTOPLANAR™ Stealth™ CoolFET™ FRFET™ PACMAN™ SuperSOT™-3 CROSSVOLT™ GlobalOptoisolator™ POP™ SuperSOT™-6 DenseTrench™ GTO™ Power247™ $HiSeC^{TM}$ SuperSOT™-8 $Power Trench^{\, @}$ DOME™ SyncFET™ EcoSPARK™ ISOPLANAR™ QFET™ TinyLogic™ E<sup>2</sup>CMOS<sup>TM</sup> LittleFET™ $OS^{TM}$ TruTranslation™ STAR\*POWER is used under license #### DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. #### LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. #### PRODUCT STATUS DEFINITIONS ### **Definition of Terms** | Datasheet Identification | Product Status | Definition | |--------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Advance Information | Formative or<br>In Design | This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. | | Preliminary | First Production | This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. | | No Identification Needed | Full Production | This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. | | Obsolete | Not In Production | This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only. | Rev. H4