

SEMITOP[®] 3

IGBT Module

SK50GBB066T

Target Data

Features

- Compact design
- One scre mounting
- Heat transfer and isolation trough direct copper bonded aluminium oxide ceramic (DCB)
- Trench IGBT technology
- CAL HD technology FWD
- Integrated NTC temperature sensor

Typical Applications*

Remarks

• Visol = 3000V AC,50Hz,1s

Absolute	Maximum Ratings	T _s =	25 °C, unless otherwise s	specified
	Conditions		Values	Units
IGBT				
V _{CES}	T _j = 25 °C		600	V
I _C	T _j = 175 °C	T _s = 25 °C	60	А
		T _s = 70 °C	50	А
I _{CRM}	I _{CRM} = 2 x I _{Cnom}		100	А
V _{GES}			± 20	V
t _{psc}	V_{CC} = 360 V; $V_{GE} \le 20$ V; VCES < 600 V	T _j = 150 °C	6	μs
Inverse D)iode			•
I _F	T _j = 175 °C	T _s = 25 °C	56	А
		T _s = 70 °C	44	А
I _{FRM}	I _{FRM} = 2 x I _{Fnom}		60	А
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C	320	А
Module				
I _{t(RMS)}				А
T _{vj}			-40 +175	°C
T _{stg}			-40 +125	°C
V _{isol}	AC, 1 min.		2500	V

Characte	ristics	T _s =	25 °C, ur	nless oth	erwise sp	pecified
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
V _{GE(th)}	V_{GE} = V_{CE} , I_C = 0,8 mA		5	5,8	6,5	V
I _{CES}	V_{GE} = 0 V, V_{CE} = V_{CES}	T _j = 25 °C				mA
		T _j = 150 °C				mA
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V				600	nA
		T _j = 150 °C				nA
V _{CE0}		T _j = 25 °C		0,9	1,1	V
		T _j = 150 °C		0,8	1	V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		11	15	mΩ
		T _j = 150°C		17	21	mΩ
V _{CE(sat)}	I _{Cnom} = 50 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}		1,45	1,85	V
		T _j = 150°C _{chiplev.}		1,65	2,05	V
C _{ies}				3,1		nF
C _{oes}	V_{CE} = 25, V_{GE} = 0 V	f = 1 MHz		0,2		nF
C _{res}				0,093		nF
Q _G	V _{GE} = -7V+15V			250		nC
t _{d(on)}				28		ns
t _r	R_{Gon} = 16 Ω	V _{CC} = 300V		32		ns
E _{on}	di/dt = 2438 A/µs	I _C = 50A		2,2		mJ
τ _{d(off)}	$R_{Goff} = 16 \Omega$	T _j = 150 °C		301		ns
t _f -	di/dt = 2438 A/µs	V _{GE} = -7/+15V		45		ns
E _{off}				1,73		mJ
R _{th(j-s)}	per IGBT			1,11		K/W

GBB-T

SEMITOP[®] 3

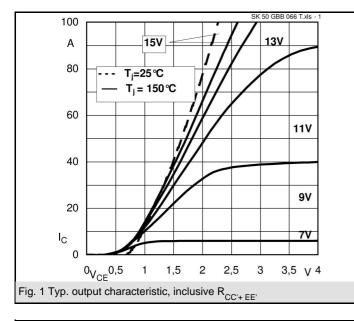
IGBT Module

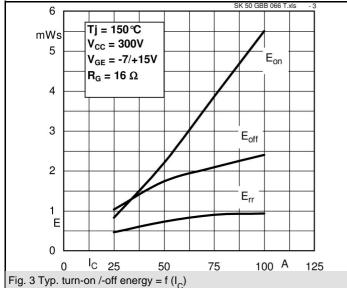
Target Data

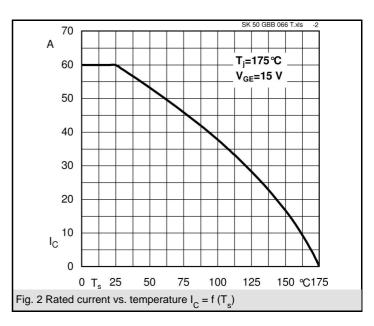
Features

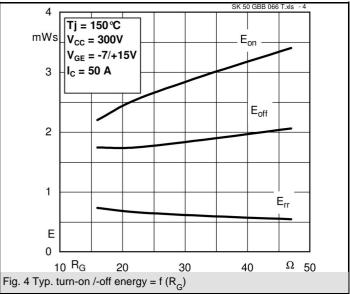
- Compact design
- One scre mounting
- Heat transfer and isolation trough direct copper bonded aluminium oxide ceramic (DCB)
- Trench IGBT technology
- CAL HD technology FWD
- Integrated NTC temperature sensor

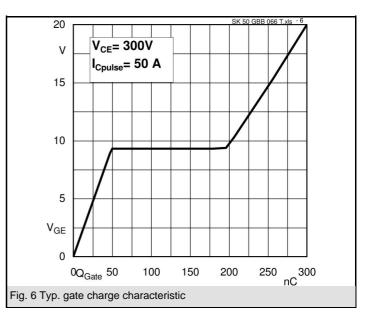
Typical Applications*


Remarks


• Visol = 3000V AC,50Hz,1s


nditions n = 50 A; V _{GE} = 0 V	$T_{j} = 25 \ ^{\circ}C_{chiplev.}$ $T_{j} = 150 \ ^{\circ}C_{chiplev.}$ $T_{j} = 25 \ ^{\circ}C$ $T_{j} = 150 \ ^{\circ}C$ $T_{j} = 25 \ ^{\circ}C$ $T_{j} = 25 \ ^{\circ}C$ $T_{j} = 150 \ ^{\circ}C$	min.	typ. 1,5 1,5 1 0,9 10	max.	V V V V V
_n = 50 A; V _{GE} = 0 V	$T_{j} = 150 °C_{chiplev.}$ $T_{j} = 25 °C$ $T_{j} = 150 °C$ $T_{j} = 25 °C$		1,5 1 0,9	1	V V V
	$T_{j} = 150 °C_{chiplev.}$ $T_{j} = 25 °C$ $T_{j} = 150 °C$ $T_{j} = 25 °C$		1,5 1 0,9	1	V V V
	$T_j = 25 °C$ $T_j = 150 °C$ $T_j = 25 °C$		1 0,9	1	V V
	$T_{j} = 150 \text{ °C}$ $T_{j} = 25 \text{ °C}$		0,9	1	V
	T _j = 25 °C			-	-
	J		10	10	
	T _i = 150 °C			12	mΩ
	J		12	14	mΩ
50 A	T _j = 150 °C		44		А
: = 2438 A/μs			4,8		μC
= 300V			0,72		mJ
diode			1,7		K/W
eat sink		2,25		2,5	Nm
			30		g
sensor					
100°C (R ₂₅ =5kΩ)			493±5%		Ω
	eat sink sensor	eat sink sensor	eat sink 2,25	eat sink 2,25 30	eat sink 2,25 2,5 30 sensor


This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.


* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

