

LS3N165 P-CHANNEL MOSFET

The LS3N165 is a monolithic dual enhancement mode P-Channel Mosfet

The LS3N165 is a dual enhancement mode P-Channel Mosfet and is ideal for space constrained applications and those requiring tight electrical matching.

The hermetically sealed TO-78 package is well suited for high reliability and harsh environment applications.

(See Packaging Information).

LS3N165 Features:

- Very high Input Impedance
- Low Capacitance
- High Gain
- High Gate Breakdown Voltage
- Low Threshold Voltage

FEATURES						
DIRECT REPLACEMENT FOR INTERSIL LS3N165						
ABSOLUTE MAXIMUM RATINGS ¹ @ 25°C (unless otherwise noted)						
Maximum Temperatures						
Storage Temperature	-65°C to +200°C					
Operating Junction Temperature	-55°C to +150°C					
Lead Temperature (Soldering, 10 sec.)	+300°C					
Maximum Power Dissipation						
Continuous Power Dissipation (one side)	300mW					
Total Derating above 25°C	4.2 mW/°C					
MAXIMUM CURRENT						
Drain Current	50mA					
MAXIMUM VOLTAGES						
Drain to Gate or Drain to Source ²	-40V					
Peak Gate to Source ³	±125V					
Gate-Gate Voltage	±80V					

LS3N165 ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise noted)

LS3N165 ELEC	LS3N165 ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise noted)							
SYMBOL	CHARACTERISTIC	MIN	TYP.	MAX	UNITS	CONDITIONS		
I _{GSSR}	Gate Reverse Leakage Current			10		$V_{GS} = -0V$		
I _{GSSF}	Gate Forward Current			-10		V _{GS} = -40V		
	T _A = +125°C			-25	pA			
I _{DSS}	Drain to Source Leakage Current			-200		V _{DS} = -20V		
I _{SDS}	Source to Drain Leakage Current			-400		$V_{SD} = -20V \ V_{DB} = 0$		
I _{D(on)}	Drain Current "On"	-5.0		-30	mA	$V_{DS} = -15V, \ V_{GS} = -10V$		
V _{GS(th)}	Gate to Source Threshold Voltage	-2.0		-5.0	V	$V_{DS} = -15V$, $I_{D} = -10\mu A$		
		-2.0		-5.0		$V_{DS} = V_{GS}$, $I_D = -10\mu A$		
r _{DS(on)}	Drain to Source "On" Resistance			300	Ω	$V_{GS} = -20V$, $I_{D} = -100 \mu A$		
g fs	Forward Transconductance	1500	-	30 00	μS	$V_{DS} = -15V$, $I_{D} = -10$ mA, $f = 1$ kHz		
g os	Output Admittance	-		300				
C _{iss}	Inp <mark>ut</mark> Cap <mark>ac</mark> itance			3				
C _{rss}	Reverse Transfer Capacitance			0.7	рF	$V_{DS} = -15V$, $I_{D} = -10mA$, $f = 1MHz^4$		
C _{oss}	Output Capacitance			3.0				
R _E (Y _{fs})	Common Source Forward	1200			μS	$V_{DS} = -15V$, $I_{D} = -10mA$, $f = 100MHz^4$		
	Transconductance							

MATCHING CHARACTERISTICS LS3N165

SYMBOL		LIMITS			
	CHARACTERISTIC	MIN	MAX	UNITS	CONDITIONS
Y _{fs1} /Y _{fs2}	Forward Transconductance Ratio	0.90	1.0	ns	$V_{DS} = -15V$, $I_{D} = -500\mu A$, $f = MHz^4$
V_{GS1-2}	Gate Source Threshold Voltage		100	mV	$V_{DS} = -15V$, $I_{D} = -500\mu A$
	Differential				
$\Delta V_{GS1-2}/\Delta T$	Gate Source Threshold Voltage		100	μV/°C	$V_{DS} = -15V$, $I_{D} = -500\mu A$
	Differential Change with Temperature				$T_A = -55^{\circ}C \text{ to} = +25^{\circ}C$

Note 1 - Absolute maximum ratings are limiting values above which LS3N165 serviceability may be impaired.

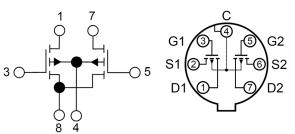
Note 2 – Per Transistor

Note 3 – Device must not be tested at ± 125 V more than once or longer than 300ms.

Available Packages:

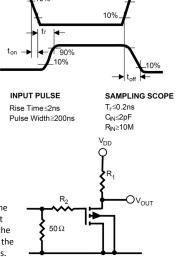
LS3N165 in TO-72 LS3N165 in bare die.

Please contact Micross for full package and die dimensions



Tel: +44 1603 788967

Email: chipcomponents@micross.com
Web: http://www.micross.com/distribution


Device Schematic

TO-78 (Bottom View)

*To avoid possible damage to the device while wiring, testing, or in actual operation, follow these procedures: To avoid the build-up of static charge, the leads of the devices should remain shorted together with a metal ring except when being tested or used. Avoid unnecessary handling. Pick up devices by the case instead of the leads. Do not insert or remove devices from circuits with the power on, as transient voltages may cause permanant damage to the devices.

SWITCHING WAVEFORM & TEST CIRCUIT

