1 Amp SOLID STATE RELAYS

DEVICES

MHS2501 Series
 (Consult Table 3 for Part Number Designations)

LEVELS AVAILABLE
 COTS
 CLASS H
 CLASS K

FEATURES

$>$ Operates from 3.3 V to 5 V logic levels
$>$ Internal Switch rated for $175^{\circ} \mathrm{C} \mathrm{T}_{\mathrm{j}}$
$>250 \mathrm{~V}$ Operation (Note 1)
> Total dose capable > 300 Krads (Note 3)
$\gg 1000 \mathrm{~V}$ of I / O isolation
$>$ Buffered input
$>$ Inputs protected against over voltage (ESD rating of 1C)
$>$ Preliminary SE results show no SEB through an LET of $85\left(\mathrm{MeV} /\left(\mathrm{mg} / \mathrm{cm}^{2}\right)\right)$ at a fluence of $2 \mathrm{e}^{6}$ ions $/ \mathrm{cm}^{2}$

DESCRIPTION:

The MHS series are Solid State Relays where the input and output circuitry are isolated from each other. The series consists of singles, duals, quads, and octals, and provides the normally open (N.O.) function. Microsemi Solid State Relays are designed for Space Flight Applications, and come packaged in a variety of hermetic configurations. These units have buffered logic level inputs and can be controlled from 3.3 V or 5 V logic signals, thus providing greater flexibility of design.

Table 1 - ABSOLUTE MAXIMUM RATINGS $\left(T c=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Parameters / Test Conditions	Symbol	Value	Unit
Input Voltage	$\mathrm{V}_{\text {in }}, \mathrm{V}_{\mathrm{L}}$	+15	Vdc
Output Current (Note 2)	Io	2.25	A
Output Voltage (Note 1)	V_{O}	250	Vdc
Weight			Grams
Temperature Range, Base of Package	T_{C}	-55 to +125	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Lead Temperature	T_{L}	300	${ }^{\circ} \mathrm{C}$
Junction Temperature, FET Switch	T_{j}	175	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Parameters / Test Conditions	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case	$\mathrm{R}_{\text {өJC }}$	17	${ }^{\circ} \mathrm{C} / \mathrm{W}$

1 Amp SOLID STATE RELAYS

Table 2 - ELECTRICAL CHARACTERISTICS, PER CHANNEL

$$
\text { (} T_{C}=+25^{\circ} \mathrm{C}, V_{L}=5 \text { Volts, } V_{\text {in }}=0 \mathrm{~V} \text { or } 3.3 \mathrm{~V} \text { as appropriate, unless otherwise noted) }
$$

Parameters / Test Conditions	Symbol	Min.	Nom	Max.	Unit
Minimum Input Activation Voltage $\mathrm{Io}=1 \mathrm{~A}, \mathrm{TC}=-55 \text { to }+125^{\circ} \mathrm{C}$	Vin(min)	3.0			V
Input - Output Leakage Vio $=1 \mathrm{kV}$ for 5 sec . (Note 4)	Iio				$\mu \mathrm{A}$
Output Capacitance (Note 4) $\mathrm{Vds}=100 \mathrm{~V}$	Coss		20		pF
Output on Resistance $\mathrm{Id}=1 \mathrm{~A}$	Rds(on)		0.6	0.75	Ω
Output on Resistance $\mathrm{Id}=1 \mathrm{~A}, \mathrm{Tj}=125^{\circ} \mathrm{C}$	Rds(on)		1.3	1.5	Ω
Output Leakage $\mathrm{Vin}=0, \mathrm{Vo}=100 \mathrm{~V}$	Io_{1}		1	100	$\mu \mathrm{A}$
Output Leakage $\operatorname{Vin}=0, \mathrm{Vo}=80 \mathrm{~V}, \mathrm{Tj}=125^{\circ} \mathrm{C}$	Io_{2}		1	100	$\mu \mathrm{A}$
Input Buffer Supply Current $\mathrm{VL}=5 \mathrm{~V}, \mathrm{TC}=25^{\circ} \mathrm{C}, 125^{\circ} \mathrm{C}$	Ih		10	15	mA
Current to Activate $\begin{aligned} & \mathrm{Vin}=3.3 \mathrm{~V} \\ & \mathrm{VL}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=-55 \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	Iin		400	600	$\mu \mathrm{A}$
Turn On Delay (See Figure 6) $\mathrm{VS}=28 \mathrm{~V}, \mathrm{RL}=250 \Omega, \mathrm{TC}=-55 \text { to }+125^{\circ} \mathrm{C}$	ton		30	45	$\mu \mathrm{S}$
Turn Off Delay (Figure 6) $\mathrm{VS}=28 \mathrm{~V}, \mathrm{RL}=250 \Omega, \mathrm{TC}=-55 \text { to }+125^{\circ} \mathrm{C}$	toff		20	30	$\mu \mathrm{S}$
Rise Time (Figure 6) $\mathrm{VS}=28 \mathrm{~V}, \mathrm{RL}=250 \Omega(\text { Note } 4)$	tr		50	75	$\mu \mathrm{S}$
Fall Time (Figure 6) $\mathrm{VS}=28 \mathrm{~V}, \mathrm{RL}=250 \Omega$ (Note 4)	tf		5	10	$\mu \mathrm{S}$

1 Amp SOLID STATE RELAYS

Table 3 - MODEL NUMBER FUNCTIONALITY CHART

MODEL NUMBER	ELECTRICAL RATINGS		RELAY CONFIGURATION				PACKAGE TYPE			
	Voltage	Amps	$\begin{aligned} & \hline \text { Single } \\ & \text { SPST } \\ & \text { N.O. } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Dual } \\ & \text { SPST } \\ & \text { N.O. } \end{aligned}$	$\begin{aligned} & \text { Quad } \\ & \text { SPST } \\ & \text { N.O. } \end{aligned}$	$\begin{aligned} & \hline \text { Octal } \\ & \text { SPST } \\ & \text { N.O. } \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { 8 Pin } \\ \text { Flat } \\ \text { Pack } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { 16 Pin } \\ \text { Flat } \\ \text { Pack } \\ \hline \end{gathered}$	$\begin{gathered} \hline 32 \text { Pin } \\ \text { Flat } \\ \text { Pack } \\ \hline \end{gathered}$	$\begin{gathered} \hline 64 \text { Pin } \\ \text { Flat } \\ \text { Pack } \\ \hline \end{gathered}$
MHS2501OFS-\&	250	1	\checkmark				\checkmark	-	\square	
MHS2501DF\$-\& 1/	250	1		\checkmark				\checkmark	\checkmark	
MHS2501QFS-\& 1/	250	1			\checkmark				\checkmark	
MHS2501KF\$-\& 1/	250	1				\checkmark				\checkmark
Replace " $\$$ " with letter to denote required screening level$\begin{aligned} & \mathrm{C}=\text { COTS } \\ & \mathrm{H}=\text { CLASS } \mathrm{H} \\ & \mathrm{~K}=\text { CLASS } \mathrm{K} \end{aligned}$										
Replace " $\&$ " with lead b $1=$ No lead bend $2=$ SMT lead bend 3 = Lead bend dow 4 = Lead bend up	d option									
1/ Consult Factory										

1 Amp SOLID STATE RELAYS

Table 4 - RELIABILITY SCREENING OPTIONS

	C	H	K	MIL-STD-883
	COTS	EQUIVALENT MIL-PRF-38534 (Note 3)		
	METHOD			

NOTE:

(1) Internal switch is rated for >1000 Volts breakdown. Consult factory for use at Voltages greater than 250 Volts.
(2) Current handling capability depends upon allowable Tcase and allowable T_{j}. See Figure 1.
(3) Microsemi does not at this time have a MIL-PRF-38534 qualified radiation hardness assurance program.
(4) Guaranteed by design.
(5) Because of the relatively slow switching times involved in power SSRs, it is important to stay within the allowances of the performance curves.

1 Amp SOLID STATE RELAYS

Figure 1: Maximum Switch Current as a Function of Case Temperature (per Channel) (Note 2)

Figure 2: Recommended Operating Area

1 Amp SOLID STATE RELAYS

Figure 3: Transient Thermal Impedance (Note 5)

Figure 4: Typical On Resistance as a Function of Junction Temperature

Maximum on Resistance as a function of Junction Temperature

1 Amp SOLID STATE RELAYS

Figure 5: Typical Application

1 Amp SOLID STATE RELAYS

PACKAGE OUTLINES

Case for Single SSR Pin Functions

1	+5 V
2	input
3	$\mathrm{~N} / \mathrm{C}$
4	Gnd
5	+ out
6	+ out
7	- out
8	- out

