Wide Bandwidth, High-Speed Buffer Amplifiers ## HOS-100AH/HOS-100SH #### **FEATURES** Wide Bandwidth — dc to 125MHz High Slew Rate — 1500V/ μ s Operation Guaranteed –55°C to +125°C (SH) High Output Drive — $\pm10V$ with 100Ω Load APPLICATIONS Current Boosters High Speed A/D Input Buffers Nuclear Instrumentation Amplifiers Coaxial Cable Drive High Speed Line Drivers Video Impedance Transformation #### **GENERAL DESCRIPTION** The HOS-100SH and HOS-100AH Bipolar Buffer Amplifiers are high-speed, voltage follower/buffers designed to provide high-current drive at frequencies from dc to over 125MHz, as well as providing $\pm 10 \text{mA}$ into $1 \text{k}\Omega$ loads ($\pm 10 \text{omA}$ peak) at slew rates of 1500V/ μ s. Both units also exhibit excellent phase linearity (2°), and low distortion (<0.1%). For commercial temperature ranges the HOS-100AH is specified for operation over the range of -25° C to $+85^{\circ}$ C (case). The HOS-100SH is specified for operation over the military range of -55° C to $+125^{\circ}$ C (case). The HOS-100SH and HOS-100AH are intended to fulfill a wide range of buffer applications, such as video impedance transformation, high impedance input buffers for A/D converters and comparators, as well as high-speed line drivers and Figure 1. Schematic Diagram HOS-100 #### HOS-100AH/HOS-100SH FUNCTIONAL BLOCK DIAGRAM nuclear instrumentation amplifiers. Additionally, both amplifiers will continuously drive 50Ω coaxial cables or serve as yoke drives in high resolution CRT displays. They are particularly well suited for current booster applications (Figure 3) within an op-amp loop where input impedance and bias current requirements are less stringent than in FET design. Figure 2. Power Derating Figure 3. Current Booster ## **SPECIFICATIONS** | | CONDITIONS | H | HOS-100SH | | | HOS-100AH | | | |----------------------------------|--------------------------------------|------|-----------|-------|-------|-----------|----------|----------------| | PARAMETER | | MIN | TYP | MAX | MIN | TYP | MAX | UNITS | | DC ELECTRICAL CHARACTERISTICS1,2 | | 1 | | | | | | - | | Input Bias Current | $T_C = 25^{\circ}C$ | 1 | 5 | 20 | ł | 5 | 25 | μA | | | | i | • | 25 | 1 | - | | μΑ | | Input Impedance | $V_{IN} = 1V \text{ rms, } f = 1kHz$ | 100 | 200 | | 100 | 200 | | kΩ | | | $R_L = 1k$, $T_C = 25$ °C | | | | ` | | | | | Voltage Gain | $V_{IN} = 1V \text{ rms}, f = 1kHz$ | 0.95 | 0.97 | 1.0 | 0.94 | 0.96 | 1.0 | V_{VV} | | - | $R_L = 1k$, $T_C = 25^{\circ}C$ | , - | | | ", | 0.,0 | 1.0 | 1 *** | | Output Offset Voltage | $R_S = 50\Omega, T_C = 25^{\circ}C$ | | 5 | 10 | | 10 | 25 | 1 | | - and an amount of the | 115 = 3002, 16 = 23 C | 1 | , | 25 | ł | 10 | 25
35 | mV
mV | | Output Offset Voltage TC | $R_S = 50\Omega$ | | 25 | 75 | | 25 | 75 | μV/°C | | Output Impedance | $V_{IN} = 1V \text{ rms, } f = 1kHz$ | i | 8 | 12 | 1 | 8 | 12 | Ω | | | $R_S = 500\Omega$, $R_L = 1k$ | 1 | Ŭ | | | 0 | 12 | " | | Output Voltage Swing | $R_S = 50\Omega$, $R_I = 1k$ | ±12 | ±13 | | ±12 | ±13 | | l _v | | | $V_S = \pm 5V$, $R_L = 1k$ | | 6 | | | 6 | | l v | | Supply Current | $V_{IN} = 0V, T_C = 25^{\circ}C$ | İ | | | ĺ | | | 1 | | | $V_S = \pm 15$ | 1 | 13 | 16 | 1 | 15 | 20 | l mA | | | $V_S = \pm 5$ | | 10 | | | 10 | 20 . | mA | | Power Consumption | $V_{IN} = 0V, V_S = \pm 15V$ | | 390 | 480 | | | 600 | mW | | | $T_C = 25^{\circ}C$ | ĺ | | | | | |] '' | | AC ELECTRICAL CHARACTERISTICS3 | | | | | | | - | | | Slew Rate | $V_{IN} = \pm 10V$ | 1000 | 1500 | | 1000 | 1400 | | V/μs | | Bandwidth | $V_{IN} = 1V \text{ rms}$ | 100 | 125 | | 100 | | | MHz | | Rise Time | $\Delta V_{IN} = 0.5V$ | | 2 | 5 | - / - | 2 | 5 | ns | | Propagation Delay | $\Delta V_{IN} = 0.5V$ | ĺ | 1.5 | | | 1.5 | - | ns | | Phase Nonlinearity | BW = 1 to $20MHz$ | l | 2 | | | 2 | | Degrees | | Harmonic Distortion | | 1 | <0.1 | | | <0.1 | | % | | AFBF | | 1.50 | 9X 10 | hours | | | | <u> </u> | #### NOTES ### ABSOLUTE MAXIMUM RATINGS | Supply Voltage (V+ - V-) | 40V | |---|-------| | Maximum Power Dissipation | 1.5W | | Input Voltage Equal to Supply Vo | ltage | | Maximum Continuous Output Current ±10 | 0mA | | Maximum Peak Output Current | 0mA | | Operating Temperature Range (Case)55°C to +12 | 25°C | | Storage Temperature65°C to +15 | 50°C | | Lead Temperature (Soldering, 10 sec) +30 | 00°C | | Maximum Junction Temperature | 75°C | ### ORDERING INFORMATION | Model | Temperature Range | Package
Options* | | | | |-----------|-------------------|---------------------|--|--|--| | HOS-100AH | -25°C to +85°C | H-12A | | | | | HOS-100SH | -55°C to +125°C | H-12A | | | | ^{*}See Section 16 for package outline information. ² Unless otherwise noted, these specifications apply for +15V applied to Pin 12, and -15V applied to Pin 10. ² Unless otherwise noted, specifications apply over a temperature range, -55°C \leq T_C \leq +125°C for the HOS-100SH, and -25°C \leq T_C \leq +85°C for the HOS-100AH. Typical values shown are for T_C = +25°C. ³ These specifications all measured with the following conditions: T_C = +25°C, V_S = ±15V, R_S = 50 Ω , R_L = 1k. Specifications subject to change without notice.