

Wide Bandwidth, High-Speed Buffer Amplifiers

HOS-100AH/HOS-100SH

FEATURES

Wide Bandwidth — dc to 125MHz High Slew Rate — 1500V/ μ s Operation Guaranteed –55°C to +125°C (SH) High Output Drive — $\pm10V$ with 100Ω Load

APPLICATIONS
Current Boosters
High Speed A/D Input Buffers
Nuclear Instrumentation Amplifiers
Coaxial Cable Drive
High Speed Line Drivers
Video Impedance Transformation

GENERAL DESCRIPTION

The HOS-100SH and HOS-100AH Bipolar Buffer Amplifiers are high-speed, voltage follower/buffers designed to provide high-current drive at frequencies from dc to over 125MHz, as well as providing $\pm 10 \text{mA}$ into $1 \text{k}\Omega$ loads ($\pm 10 \text{omA}$ peak) at slew rates of 1500V/ μ s. Both units also exhibit excellent phase linearity (2°), and low distortion (<0.1%).

For commercial temperature ranges the HOS-100AH is specified for operation over the range of -25° C to $+85^{\circ}$ C (case). The HOS-100SH is specified for operation over the military range of -55° C to $+125^{\circ}$ C (case).

The HOS-100SH and HOS-100AH are intended to fulfill a wide range of buffer applications, such as video impedance transformation, high impedance input buffers for A/D converters and comparators, as well as high-speed line drivers and

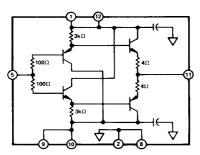
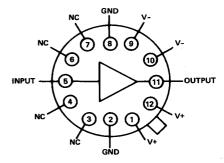



Figure 1. Schematic Diagram HOS-100

HOS-100AH/HOS-100SH FUNCTIONAL BLOCK DIAGRAM

nuclear instrumentation amplifiers. Additionally, both amplifiers will continuously drive 50Ω coaxial cables or serve as yoke drives in high resolution CRT displays.

They are particularly well suited for current booster applications (Figure 3) within an op-amp loop where input impedance and bias current requirements are less stringent than in FET design.

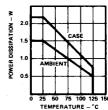


Figure 2. Power Derating

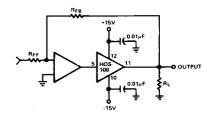


Figure 3. Current Booster

SPECIFICATIONS

	CONDITIONS	H	HOS-100SH			HOS-100AH		
PARAMETER		MIN	TYP	MAX	MIN	TYP	MAX	UNITS
DC ELECTRICAL CHARACTERISTICS1,2		1						-
Input Bias Current	$T_C = 25^{\circ}C$	1	5	20	ł	5	25	μA
		i	•	25	1	-		μΑ
Input Impedance	$V_{IN} = 1V \text{ rms, } f = 1kHz$	100	200		100	200		kΩ
	$R_L = 1k$, $T_C = 25$ °C				`			
Voltage Gain	$V_{IN} = 1V \text{ rms}, f = 1kHz$	0.95	0.97	1.0	0.94	0.96	1.0	V_{VV}
-	$R_L = 1k$, $T_C = 25^{\circ}C$, -			",	0.,0	1.0	1 ***
Output Offset Voltage	$R_S = 50\Omega, T_C = 25^{\circ}C$		5	10		10	25	1
- and an amount of the	115 = 3002, 16 = 23 C	1	,	25	ł	10	25 35	mV mV
Output Offset Voltage TC	$R_S = 50\Omega$		25	75		25	75	μV/°C
Output Impedance	$V_{IN} = 1V \text{ rms, } f = 1kHz$	i	8	12	1	8	12	Ω
	$R_S = 500\Omega$, $R_L = 1k$	1	Ŭ			0	12	"
Output Voltage Swing	$R_S = 50\Omega$, $R_I = 1k$	±12	±13		±12	±13		l _v
	$V_S = \pm 5V$, $R_L = 1k$		6			6		l v
Supply Current	$V_{IN} = 0V, T_C = 25^{\circ}C$	İ			ĺ			1
	$V_S = \pm 15$	1	13	16	1	15	20	l mA
	$V_S = \pm 5$		10			10	20 .	mA
Power Consumption	$V_{IN} = 0V, V_S = \pm 15V$		390	480			600	mW
	$T_C = 25^{\circ}C$	ĺ] ''
AC ELECTRICAL CHARACTERISTICS3							-	
Slew Rate	$V_{IN} = \pm 10V$	1000	1500		1000	1400		V/μs
Bandwidth	$V_{IN} = 1V \text{ rms}$	100	125		100			MHz
Rise Time	$\Delta V_{IN} = 0.5V$		2	5	- / -	2	5	ns
Propagation Delay	$\Delta V_{IN} = 0.5V$	ĺ	1.5			1.5	-	ns
Phase Nonlinearity	BW = 1 to $20MHz$	l	2			2		Degrees
Harmonic Distortion		1	<0.1			<0.1		%
AFBF		1.50	9X 10	hours				<u> </u>

NOTES

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (V+ - V-)	40V
Maximum Power Dissipation	1.5W
Input Voltage Equal to Supply Vo	ltage
Maximum Continuous Output Current ±10	0mA
Maximum Peak Output Current	0mA
Operating Temperature Range (Case)55°C to +12	25°C
Storage Temperature65°C to +15	50°C
Lead Temperature (Soldering, 10 sec) +30	00°C
Maximum Junction Temperature	75°C

ORDERING INFORMATION

Model	Temperature Range	Package Options*			
HOS-100AH	-25°C to +85°C	H-12A			
HOS-100SH	-55°C to +125°C	H-12A			

^{*}See Section 16 for package outline information.

² Unless otherwise noted, these specifications apply for +15V applied to Pin 12, and -15V applied to Pin 10.

² Unless otherwise noted, specifications apply over a temperature range, -55°C \leq T_C \leq +125°C for the HOS-100SH, and -25°C \leq T_C \leq +85°C for the HOS-100AH. Typical values shown are for T_C = +25°C.

³ These specifications all measured with the following conditions: T_C = +25°C, V_S = ±15V, R_S = 50 Ω , R_L = 1k.

Specifications subject to change without notice.