

SML200HB12

Attributes:

- -Aerospace build standard
- -High reliability
- -Lightweight
- -Metal matrix base plate
- -AIN isolation
- -Trench gate igbts

Maximum rated values/Electrical Properties

Collector-emitter Voltage		V_{ce}	1200	V	
DC Collector Current	Tc=70C, Tvj=175C Tc=25C,Tvj=175C	I _c , nom Ic			
Repetitive peak Collector Current	tp=1msec,Tc=80C	I_{crm}	400	A	
Total Power Dissipation	Te=25C	P _{tot}	2380	W	
Gate-emitter peak voltage		V_{ges}	+/-20	V	
DC Forward Diode Current		$ m I_f$	200	A	
Repetitive Peak Forward Current	tp=1msec	$ m I_{frm}$	400	A	
I ² t value per diode	Vr=0V, tp=10msec, Tvj=125C	I ² _t	7800	A ² sec	
Isolation voltage	RMS, 50Hz, t=1min	V_{isol}	2500	V	

Collector-emitter saturation voltage	Ic=200A,Vge=15V, Tc=25C Ic=200A,Vge=15V,Tc=125C	$V_{\text{ce(sat)}} \\$		1.7 2.0	2.15	V
Gate Threshold voltage	Ic=8mA,Vce=Vge, Tvj=25C	Vge _(th)	5.0	5.8	6.5	V
Input capacitance	f=1MHz,Tvj=25C,Vce=25V, Vge=0V	Cies		14		nF
Reverse transfer Capacitance	f=1MHz,Tvj=25C,Vce=25V, Vge=0V	C_{res}		0.5		nF
Collector emitter cut off current	Vce=1200V,Vge=0V,Tvj=25C	I_{ces}		1	5	mA
Gate emitter cut off current	Vce=0V,Vge=20V,Tvj=25C	I_{ges}			400	nA

Turn on delay time	Ic=200A, Vcc=600V Vge=+/15V,Rg=3.6Ω,Tvj=25C Vge=+/-15V,Rg=3.6Ω,Tvj=125C	t _{d,on}	250 300	nsec nsec nsec
Rise time	Ic=200A, Vcc=600V Vge=+/-15V,Rg=3.6Ω,Tvj=25C Vge=+/-15V,Rg=3.6Ω,Tvj=125C	tr	90 100	nsec nsec nsec
Turn off delay time	Ic=200A, Vcc=600V Vge=+/-15V,Rg=3.6Ω,Tvj=25C Vge=+/-15V,Rg=3.6Ω,Tvj=125C	${ m t_{d,off}}$	550 650	nsec nsec nsec
Fall time	Ic=200A, Vcc=600V Vge=+/-15V,Rg=3.6Ω,Tvj=25C Vge=+/-15V,Rg=3.6Ω,Tvj=125C	t_{f}	130 180	nsec nsec nsec
Turn on energy loss per pulse	Ic=200A,Vce=600V,Vge=+/-15V Rge=3.6Ω,L=30nH Tvj=25C di/dt=6000A/μsec Tvj=125C	Eon	15	mJ mJ
Turn off energy loss per pulse	Ic=200A,Vce=600V,Vge=+/-15V Rge=3.6Ω,L=30nH Tvj=25C di/dt=4000A/μsec Tvj=125C	$E_{\rm off}$	35.0	mJ mJ
SC Data	tp≤10µsec, Vge≤15V Vcc=900V, Vce _{(max)=} Vces-Lσdi/dt Tvj=125C	I_{sc}	800	A
Stray Module inductance		$L_{\sigma ce}$	20	nН
Terminal-chip resistance		R _c	0.7	mΩ

Diode characteristics

Forward voltage	Ic=200A,Vge=0V, Tc=25C Ic=200A,Vge=0V, Tc=125C	V_{f}	1.65 1.65	2.15	V V
Peak reverse recovery current	If=200A, -di/dt=2000A/µsec Vce=600V,Vge=-15V,Tvj=25C Vce=600V,Vge=-15V,Tvj=125C	I_{rm}	150 190		A A
Recovered charge	If=200A, -di/dt=2000A/µsec Vce=600V,Vge=-15V,Tvj=25C Vce=600V,Vge=-15V,Tvj=125C	Qr	20 36		μC μC
Reverse recovery energy	If=200A, -di/dt=2000A/µsec Vce=600V,Vge=-15V,Tvj=25C Vce=600V,Vge=-15V,Tvj=125C	E _{rec}	9 17		mJ mJ

Thermal Properties			Min	Тур	Max	
Thermal resistance junction to case	Igbt Diode	$R_{ heta J ext{-}C}$			0.063 0.11	K/W
Thermal resistance case to heatsink		$R_{ heta ext{C-hs}}$		0.03		K/W
Maximum junction temperature		Tvj			175	С
Maximum operating temperature		Тор	-55		175	С
Storage Temperature		Tstg	-55		175	С

output characteristic IGBT-inverter (typical) I_C = f (V_{CE}) V_{GE} = 15 V

output characteristic IGBT-inverter (typical)

I_C = f (V_{CE}) T_{vj} = 125°C

transfer characteristic IGBT-inverter (typical)

I_C = f (V_{GE}) V_{CE} = 20 V

switching losses IGBT-inverter (typical) $E_{on} = f$ (I_C), $E_{off} = f$ (I_C) $V_{GE} = \pm 15$ V, $R_{Gon} = 2.4$ Ω , $R_{Goff} = 2.4$ Ω , $V_{CE} = 600$ V

switching losses IGBT-Inverter (typical)

 $E_{on} = f(R_G), E_{off} = f(R_G)$ $V_{GE} = \pm 15 \text{ V, } I_C = 300 \text{ A, } V_{CE} = 600 \text{ V}$

reverse bias safe operating area IGBT-inv. (RBSOA) Ic = f (V_{CE}) V_{GE} = ±15 V, R_{Goff} = 2.4 Ω , T_{vj} = 125°C

forward characteristic of diode-inverter (typical) I_F = f (V_F)

All dimensions in mm

CIRCUIT DIAGRAM