SML200HB12 ### Attributes: - -Aerospace build standard - -High reliability - -Lightweight - -Metal matrix base plate - -AIN isolation - -Trench gate igbts # **Maximum rated values/Electrical Properties** | Collector-emitter Voltage | | V_{ce} | 1200 | V | | |------------------------------------|-------------------------------------|-----------------------------|-------|--------------------|--| | DC Collector Current | Tc=70C, Tvj=175C
Tc=25C,Tvj=175C | I _c , nom
Ic | | | | | Repetitive peak Collector Current | tp=1msec,Tc=80C | I_{crm} | 400 | A | | | Total Power Dissipation | Te=25C | P _{tot} | 2380 | W | | | Gate-emitter peak voltage | | V_{ges} | +/-20 | V | | | DC Forward Diode
Current | | $ m I_f$ | 200 | A | | | Repetitive Peak
Forward Current | tp=1msec | $ m I_{frm}$ | 400 | A | | | I ² t value per diode | Vr=0V, tp=10msec,
Tvj=125C | I ² _t | 7800 | A ² sec | | | Isolation voltage | RMS, 50Hz, t=1min | V_{isol} | 2500 | V | | | Collector-emitter saturation voltage | Ic=200A,Vge=15V, Tc=25C
Ic=200A,Vge=15V,Tc=125C | $V_{\text{ce(sat)}} \\$ | | 1.7
2.0 | 2.15 | V | |--------------------------------------|--|-------------------------|-----|------------|------|----| | Gate Threshold voltage | Ic=8mA,Vce=Vge, Tvj=25C | Vge _(th) | 5.0 | 5.8 | 6.5 | V | | Input capacitance | f=1MHz,Tvj=25C,Vce=25V,
Vge=0V | Cies | | 14 | | nF | | Reverse transfer Capacitance | f=1MHz,Tvj=25C,Vce=25V,
Vge=0V | C_{res} | | 0.5 | | nF | | Collector emitter cut off current | Vce=1200V,Vge=0V,Tvj=25C | I_{ces} | | 1 | 5 | mA | | Gate emitter cut off current | Vce=0V,Vge=20V,Tvj=25C | I_{ges} | | | 400 | nA | | Turn on delay time | Ic=200A, Vcc=600V
Vge=+/15V,Rg=3.6Ω,Tvj=25C
Vge=+/-15V,Rg=3.6Ω,Tvj=125C | t _{d,on} | 250
300 | nsec
nsec
nsec | |--------------------------------|---|-------------------|------------|----------------------| | Rise time | Ic=200A, Vcc=600V
Vge=+/-15V,Rg=3.6Ω,Tvj=25C
Vge=+/-15V,Rg=3.6Ω,Tvj=125C | tr | 90
100 | nsec
nsec
nsec | | Turn off delay time | Ic=200A, Vcc=600V
Vge=+/-15V,Rg=3.6Ω,Tvj=25C
Vge=+/-15V,Rg=3.6Ω,Tvj=125C | ${ m t_{d,off}}$ | 550
650 | nsec
nsec
nsec | | Fall time | Ic=200A, Vcc=600V
Vge=+/-15V,Rg=3.6Ω,Tvj=25C
Vge=+/-15V,Rg=3.6Ω,Tvj=125C | t_{f} | 130
180 | nsec
nsec
nsec | | Turn on energy loss per pulse | Ic=200A,Vce=600V,Vge=+/-15V
Rge=3.6Ω,L=30nH Tvj=25C
di/dt=6000A/μsec Tvj=125C | Eon | 15 | mJ
mJ | | Turn off energy loss per pulse | Ic=200A,Vce=600V,Vge=+/-15V
Rge=3.6Ω,L=30nH Tvj=25C
di/dt=4000A/μsec Tvj=125C | $E_{\rm off}$ | 35.0 | mJ
mJ | | SC Data | tp≤10µsec, Vge≤15V Vcc=900V,
Vce _{(max)=} Vces-Lσdi/dt Tvj=125C | I_{sc} | 800 | A | | Stray Module inductance | | $L_{\sigma ce}$ | 20 | nН | | Terminal-chip resistance | | R _c | 0.7 | mΩ | ### **Diode characteristics** | Forward voltage | Ic=200A,Vge=0V, Tc=25C
Ic=200A,Vge=0V, Tc=125C | V_{f} | 1.65
1.65 | 2.15 | V
V | |-------------------------------|---|------------------|--------------|------|----------| | Peak reverse recovery current | If=200A, -di/dt=2000A/µsec
Vce=600V,Vge=-15V,Tvj=25C
Vce=600V,Vge=-15V,Tvj=125C | I_{rm} | 150
190 | | A
A | | Recovered charge | If=200A, -di/dt=2000A/µsec
Vce=600V,Vge=-15V,Tvj=25C
Vce=600V,Vge=-15V,Tvj=125C | Qr | 20
36 | | μC
μC | | Reverse recovery energy | If=200A, -di/dt=2000A/µsec
Vce=600V,Vge=-15V,Tvj=25C
Vce=600V,Vge=-15V,Tvj=125C | E _{rec} | 9
17 | | mJ
mJ | | Thermal Properties | | | Min | Тур | Max | | |-------------------------------------|---------------|------------------------|-----|------|---------------|-----| | Thermal resistance junction to case | Igbt
Diode | $R_{ heta J ext{-}C}$ | | | 0.063
0.11 | K/W | | Thermal resistance case to heatsink | | $R_{ heta ext{C-hs}}$ | | 0.03 | | K/W | | Maximum junction temperature | | Tvj | | | 175 | С | | Maximum operating temperature | | Тор | -55 | | 175 | С | | Storage Temperature | | Tstg | -55 | | 175 | С | ## output characteristic IGBT-inverter (typical) I_C = f (V_{CE}) V_{GE} = 15 V ## output characteristic IGBT-inverter (typical) I_C = f (V_{CE}) T_{vj} = 125°C ## transfer characteristic IGBT-inverter (typical) I_C = f (V_{GE}) V_{CE} = 20 V switching losses IGBT-inverter (typical) $E_{on} = f$ (I_C), $E_{off} = f$ (I_C) $V_{GE} = \pm 15$ V, $R_{Gon} = 2.4$ Ω , $R_{Goff} = 2.4$ Ω , $V_{CE} = 600$ V #### switching losses IGBT-Inverter (typical) $E_{on} = f(R_G), E_{off} = f(R_G)$ $V_{GE} = \pm 15 \text{ V, } I_C = 300 \text{ A, } V_{CE} = 600 \text{ V}$ # reverse bias safe operating area IGBT-inv. (RBSOA) Ic = f (V_{CE}) V_{GE} = ±15 V, R_{Goff} = 2.4 Ω , T_{vj} = 125°C #### forward characteristic of diode-inverter (typical) I_F = f (V_F) # All dimensions in mm CIRCUIT DIAGRAM