
COMMUNICATION SEMICONDUCTORS
MX909A

Application Note Mobitex™ R14N Short Data
Block Frame Support

©2001 MX-COM, INC. www.mxcom.com Tel: 800 638 5577 336 744 5050 Fax: 336 744 5054 Doc. # 208300160.001
4800 Bethania Station Road, Winston-Salem, NC 27105-1201 USA All trademarks and service marks are held by their respective companies.

1. Background
The MX909A Wireless Packet Data Pump performs baseband signal processing and Medium Access Control
(MAC) protocol functions for a GMSK wireless packet data modem. While the MX909A uses data block sizes
and FEC/CRC algorithms compatible with the Mobitex™ network over-air-standard, it also provides flexible
operating modes that make it suitable for private and general-purpose applications. The MX909A assembles
application data received from the µC, adds forward error correction (FEC), adds an error detection (CRC)
code, interleaves this data to provide burst-error protection, and randomizes (scrambles) the bit pattern. After
automatically adding bit and frame sync codewords, the data packet is converted to analog levels and
Gaussian filtered such that it is suitable for modulating a transmitter VCO (modulation index = 0.5) creating
GMSK signals at the transmitter output.
Figure 1, shows the Mobitex™ frame structure.

7 6 5 4 3 2 1 0
0
1
2
3
4
5
6

byte

msb lsb
Frame Head Structure

bit sync 1
bit sync 2

frame sync 1
frame sync 2
control byte 1
control byte 2

FEC 1 FEC 2

Data 1 FEC 1byte

FEC 20CRC byte 2

7 6 5 4 3 2 1 0
msb lsb

Data Block Structure
Data or CRC

3 2 1 0
lsbmsb FEC

0

CRC byte 1

Data 2
Data 3
Data 4
Data 5
Data 6
Data 7
Data 8
Data 9

Data 10
Data 11
Data 12
Data 13
Data 14
Data 15
Data 16
Data 17
Data 18

FEC 2
FEC 3
FEC 4
FEC 5
FEC 6
FEC 7
FEC 8
FEC 9

FEC 10
FEC 11
FEC 12
FEC 13
FEC 14
FEC 15
FEC 16
FEC 17
FEC 18
FEC 19

Data Block 2
240 bits

Data Block 32
240 bits

Interleave / De-Interleave

Scramble / De-Scramble

Data Block 1
240 bits

bit sync
16 bits

frame sync
16 bits

control bytes
16 bits

FEC
8 bits

7 byte Frame Head, always present Data Blocks, when present

Over Air Frame

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Figure 1: Mobitex™ Over Air Signal Format

Mobitex™ R14N Short Data Block Frame Support Page 2 of 6 MX909A Application Note

©2001 MX-COM, INC. www.mxcom.com Tel: 800 638 5577 336 744 5050 Fax: 336 744 5054 Doc. # 208300160.001
4800 Bethania Station Road, Winston-Salem, NC 27105-1201 USA All trademarks and service marks are held by their respective companies.

Data is transmitted in the form of a Frame Head immediately optionally followed by up to 32 Data Blocks. The
frame consists of:
Frame Head (7 bytes)

• 2 bytes of bit Sync (0xCCCC for the down-link and 0x3333 for the up-link)
• 2 bytes of frame Sync (System Specific)
• 2 bytes of control data
• 1 byte of FEC code (4 bits for each of the control bytes)

Data Block (30 bytes)
• 18 bytes of data
• 2 bytes of CRC (calculated from the 18 data bytes)
• 10 bytes of FEC (4 bits of FEC code for each of the data and CRC bytes)
• The resulting 240 bits are interleaved and scrambled before transmission

2. The R14N Short Block Frame Acknowledgement
A latest version of the Mobitex™ Interface Specification incorporates an extended battery saving protocol
known as R14N that enhances Mobitex™ systems by supporting new services and levels of performance. The
enhancements are in three key areas: better coverage, longer battery life and faster radio link
reestablishment.
R14N introduces a new ROSI (RadiO Signaling) protocol link layer frame type called the SBF_ACK (Short
Block Frame ACKnowledgement). This new frame type is shorter than others and improves base station
reception success rate under adverse radio conditions. Another advantage is reduced power consumption
used to transmit the shorter frame. R14N allows mobiles to respond using a shorter transmit period, thus
increasing battery life by reducing the RF transmitter on period. Use of the shorter frame is only permitted in
networks that support the extended battery saving protocol, so portable radio modems must first determine
that a network provides support before using the new frame type.

7 6 5 4 3 2 1 0
0
1
2
3
4
5
6

byte

msb lsb
Frame Head Structure

bit sync 1
bit sync 2

frame sync 1
frame sync 2
control byte 1
control byte 2

FEC 1 FEC 2

Data 1 FEC 1

FEC 6CRC byte 2

7 6 5 4 3 2 1 0
msb lsb

Short Data Block Structure
Data or CRC

3 2 1 0
lsbmsb FEC

0

CRC byte 1

Data 2
Data 3
Data 4

FEC 2
FEC 3
FEC 4
FEC 5

Interleave / De-Interleave

Scramble / De-Scramble

Data Block
72 bits

bit sync
16 bits

frame sync
16 bits

control bytes
16 bits

FEC
8 bits

7 byte Frame Head, always present Data Block, always present

Over Air Frame

1
2
3
4
5

byte

Figure 2: Mobitex™ Short Block Frame Over Air Signal Format

Mobitex™ R14N Short Data Block Frame Support Page 3 of 6 MX909A Application Note

©2001 MX-COM, INC. www.mxcom.com Tel: 800 638 5577 336 744 5050 Fax: 336 744 5054 Doc. # 208300160.001
4800 Bethania Station Road, Winston-Salem, NC 27105-1201 USA All trademarks and service marks are held by their respective companies.

Figure 2, shows the Mobitex™ Short Block Frame. The format of the Short Block Frame differs from all other
frames only in the number of bytes contained in the data block and the mandatory presence of one data block.
The data block for the short frame would be formed as follows:
Short Data Block (9 bytes)

• 4 bytes of data
• 2 bytes of CRC (calculated from 4 data bytes)
• 3 bytes of FEC code (4 bits for each of the data and CRC bytes)
• The resulting 72 bits are interleaved and scrambled before transmission.

The Short Frame Block Acknowledgement always contains one data block and is only transmitted, never
received, by the modem. (Base stations do not transmit SBF_ACKs to the modem.)

3. Implementing the R14N Short Frame on the MX909A
To support the MobitexTM R14N battery saving protocol, an end product must support the link layer to physical
layer conversion for the new Short Block Frame.
Data is transmitted over the air in the form of 'frames' consisting of the 'Frame Head' followed by one or more
formatted data blocks. The MX909A constructs the data blocks from the 'raw' data using a combination of
CRC (Cyclic Redundancy Checksum) generation, Forward Error Correction coding (FEC), Interleaving and
scrambling. The MX909A treats operations such as transmitting or receiving frames (or parts of a frame) as
'tasks', which are initiated by the µC by writing instruction bytes to the command register. A frame, according
to Figure 1, would be sent by writing aT7H (Transmit 7 byte Frame Head) task followed by a TDB (Transmit
Data Block) task. The TDB 'task' takes 18 bytes of 'raw' data, calculates and applies a 16-bit CRC and forms
the FEC for the 18 bytes and the CRC. This data is then interleaved and passed through the scrambler (if
enabled) before sending it as the Data Block part of the Mobitex™ frame.
The MX909A does not have a 'task' similar to TDB for the short data block frame. The general-purpose 'tasks'
TQB (Transmit 4 Bytes) or TSB (Transmit Single Byte) could be used to transmit the shorter frame. The TQB
and the TSB 'tasks' read the data as presented to the modem and transmit them without adding CRC and
FEC, and without passing the data through the interleaver and the scrambler. For this reason, the host µC
must format the data before presenting it to the MX909A. Section 6 shows a C program that will take 4 bytes
of data and generate 9 bytes of formatted data ready for transmission.

4. Transmit Short Frame Example
If the device is required to send a Mobitex™ Short Block Frame, the following control signals and data should
be issued to the modem, provided the device is not starting from powersave state. TX//RX is set to '1' and the
SCREN, DARA, CKDIV, and DQEN have been set as required after power was applied to the device.
1. 6 bytes forming the Frame Head are loaded into the Data Buffer, followed by a 2-bit pause to let the filter

stabilize, followed by a T7H task.
2. Device interrupts host µC with /IRQ when the 6th byte is read from the Data Buffer
3. Status Register is read and the first 4 bytes of formatted data are loaded into the Data Buffer, followed by

a TQB task.
4. Device interrupts host µC with /IRQ when 4th byte is read from Data buffer
5. Status Register is read, and the next 4 bytes of formatted data are loaded into the Data Buffer, followed by

TQB task.
6. Status Register is read, and the last byte of formatted data is loaded into the Data Buffer, followed by a

TSB task.
7. Status Register is read, host may load data and set next task as required:

GOTO '1' If another Frame is to be immediately transmitted
GOTO '8' If no more data is to be immediately transmitted.

8. 1 byte representing the 'hang byte' is loaded into the data buffer followed by a TSB task.

Mobitex™ R14N Short Data Block Frame Support Page 4 of 6 MX909A Application Note

©2001 MX-COM, INC. www.mxcom.com Tel: 800 638 5577 336 744 5050 Fax: 336 744 5054 Doc. # 208300160.001
4800 Bethania Station Road, Winston-Salem, NC 27105-1201 USA All trademarks and service marks are held by their respective companies.

Figure 3 shows a top level flowchart of the short block frame transmit process:

Start

Write Task = 'RESET'
to Command Register

Set µC
TQB Counter to 2

Write CKDIV, HI//LO,
and DARA values to

Control Register

Write IRQEN = '1',
SCREN = '1', TX//RX = '1'

to Mode Register

Read Status Register

BFREE = '1'?

Write 6 bytes of
Frame Head to Data

Buffer

Wait 2-bit times
for lowpass filter

to settle

Write Task = 'T7H' to
Command Register

Wait for /IRQ line to
go low then execute

TX I.S.R

Wait for /IRQ line to go
low then execute TX

I.S.R

Decrement µC
TQB Counter

TQB Counter = '0'?

Write 4 bytes of
formatted data to

Data Buffer

Write Task = TQB to
Command Register

Write Last Byte of
Formatted data into

Data Buffer

Wait for /IRQ line
to go low then

execute TX I.S.R

Write 'Hang Byte' to
Data Buffer

Write Task = 'TSB' to
Command Register

Finish

No A

A

YES

YESNO

Read Status Register

Service Other Interrupts/IRQ bit = '1'?

IBEMPTY = '1'?

BFREE = '1'?

Fault detected:
Abort Transmission

Fault detected:
Abort Transmission

TX Interrupt Service
Routine (I.S.R)

NO

YES

NO

YES

NO

YES

Figure 3: Transmit Short Block Frame Flow Chart

5. Conclusion
This document describes how to implement the functions required for the transmission of the Short Block
Frame Acknowledgement as specified in the latest version of the Mobitex™ interface specifications. The
flexibility of the MX909A allows this to be done by making use of some of the more general-purpose 'tasks'
supported by the device. The implementation requires that the µC assemble the Short Data Block by taking
the 4 bytes of ‘raw’ data, processing the data to add the CRC and FEC codes, interleaving the data for burst
error protection and then randomizing the data if the scrambling function is enabled.

Mobitex™ R14N Short Data Block Frame Support Page 5 of 6 MX909A Application Note

©2001 MX-COM, INC. www.mxcom.com Tel: 800 638 5577 336 744 5050 Fax: 336 744 5054 Doc. # 208300160.001
4800 Bethania Station Road, Winston-Salem, NC 27105-1201 USA All trademarks and service marks are held by their respective companies.

6. 'C' language program
/* Program takes 4 bytes of 'raw data' and generates 9 bytes */
/* of formatted data by adding CRC, FEC, then interleaving */
/* and scrambling it (if scrambler enabled) */

#include <stdio.h>

int crc_16(int [], int);
int fec_add(int);
void interleave(int[]); /* function Declarations */
void scramble_block(int);

int outbits[72];
int bits[72]; /* Global Variables */

void main(void)
{
int n_bytes = 6;
int data_bytes[6] = {0x09, 0xEB, 0xCA, 0x20, 0, 0}; /*enter 4 'raw data' bytes*/
int crc,i,j,z,w = 0xff;

crc = crc_16(data_bytes, n_bytes-2); /*CRC generation function call*/
data_bytes[n_bytes - 2] = (crc >> 8) & 0x00ff; /*member 5 of array is CRC MSB*/
data_bytes[n_bytes - 1] = crc & 0x00ff; /*member 6 of array is CRC LSB*/

for (i = 0; i < n_bytes; i++)
{
data_bytes[i] = fec_add(data_bytes[i]); /*FEC generation function call*/
}

interleave(data_bytes); /* interleave function call*/
scramble_block(1); /* 1 enables scrambler*/

printf("\n The formatted bytes are:"); /* print the 9 formatted bytes*/
for(j = 0; j < 9; j++)

{
for(i = 0; i < 8; i++)

{
w = w << 1;
z = outbits[j*8 + i] & 0x1;
w = (w | z) & 0xff;
}

printf("%4x", w);
}

}

int crc_16(int data_bytes[], int n_bytes)
{

int i, j, fb, mask;
long crc = 0xffff; /* CRC generation */
for(i=0; i < n_bytes; i++)

{
mask = 1; /* as CCITT X25 */
for(j = 0; j < 8; j++) /* X16 + X12 + X5 + 1 */

{
fb = 0;
if((data_bytes[i] & mask) != 0)

fb = 1;
fb = (fb ^ crc) & 1;
crc = (crc >> 1) & 0x7fff;
if(fb != 0)

crc = crc ^ 0x8408;
mask = (mask << 1);
}

}
return(crc ^ 0xffff); /* 1s complement result */

}

Mobitex™ R14N Short Data Block Frame Support Page 6 of 6 MX909A Application Note

©2001 MX-COM, INC. www.mxcom.com Tel: 800 638 5577 336 744 5050 Fax: 336 744 5054 Doc. # 208300160.001
4800 Bethania Station Road, Winston-Salem, NC 27105-1201 USA All trademarks and service marks are held by their respective companies.

/* Add 4 bit FEC to 8 bit data byte. Return 12 bit result */
/* FEC coding matrix. MSB at left */

/* 11101100 1000 */
/* 11010011 0100 */
/* 10111010 0010 */
/* 01110101 0001 */

int fec_add(int x)
{

int y, i, b[8];

y = x;
for(i = 0; i < 8; i++)

{
b[i] = y & 1;
y = y >> 1;
}

y = (x << 4) & 0xff0;
if((b[7] ^ b[6] ^ b[5] ^ b[3] ^ b[2]) == 1) y |= 0x8;
if((b[7] ^ b[6] ^ b[4] ^ b[1] ^ b[0]) == 1) y |= 0x4;
if((b[7] ^ b[5] ^ b[4] ^ b[3] ^ b[1]) == 1) y |= 0x2;
if((b[6] ^ b[5] ^ b[4] ^ b[2] ^ b[0]) == 1) y |= 0x1;
return(y);
}

void interleave(int inbytes[]) /* Interleave */
{
int i, j, crc, data[6], bit, mask;

mask = 0x800;
for(i = 0; i < 12; i++)

{
for(j = 0; j < 6; j++)

{
bit = 0;
if((inbytes[j] & mask) != 0) bit = 1;

outbits[j + 6*i] = bit;
}

mask = mask >> 1;
}

}

void scramble_block(int reset)
{

static int sreg;
int i;

if(reset != 0)
sreg = 0x1ff;

else
sreg = 0x000;

for(i = 0; i < 72; i++)
{
outbits[i] ^= (sreg & 1);
if(((sreg & 0x11) == 0x10) || ((sreg & 0x11) == 0x01))
sreg |= 0x200;
sreg = (sreg >> 1) & 0x1ff;
}

}

