${ }_{\text {mu }}$ Rita P_{s} Murata Power Solutions

FEATURES

14-bit resolution
500kHz sampling rate
Functionally complete; No missing codes
Small 24 -pin DDIP or SMT package
Operates from $\pm 15 \mathrm{~V}$ or $\pm 12 \mathrm{~V}$ supplies
+5V supply
Low power, 1.75 Watts maximum
Samples up to Nyquist frequencies
Outstanding dynamic performance
Bipolar $\pm 5 \mathrm{~V}$ input range

PRODUCT OVERVIEW

The ADS-926 is a high-performance, 14-bit, 500 kHz sampling A/D converter. This device accurately samples full-scale input signals up to Nyquist frequencies with no missing codes and exhibits outstanding dynamic performance that surpasses most 16 -bit, 500 kHz sampling A / D 's. THD and SNR, for example, are typically -90dB and 80 dB when converting fullscale input signals up to 100 kHz .

Housed in a small 24-pin DDIP or SMT (gullwing) package, the functionally complete ADS-926 contains a fast-settling sample-hold amplifier, a subranging (two-pass) A/D converter, a precise
voltage reference, timing/control logic, and errorcorrection circuitry. Digital input and output levels are TTL.

Requiring $\pm 15 \mathrm{~V}$ (or $\pm 12 \mathrm{~V}$) and +5 V supplies, the ADS-926 dissipates only 1.75W (1.6W for $\pm 12 \mathrm{~V}$), maximum. The unit is offered with a bipolar input (-5 V to +5 V). Models are available for use in either commercial (0 to $+70^{\circ} \mathrm{C}$) or military (-55 to $+125^{\circ} \mathrm{C}$) operating temperature ranges.

Applications include radar, sonar, spectrum analysis, and graphic/medical imaging. Contact DATEL for information on devices screened to MIL-STD-883.

INPUT/OUTPUT CONNECTIONS			
PIN	FUNCTION	PIN	FUNCTION
1	BIT 14 (LSB)	24	$-12 V /-15 V ~ S U P P L Y ~$
2	BIT 13	23	ANALOG GROUND
3	BIT 12	22	$+12 \mathrm{~V} /+15 V$ SUPPLY
4	BIT 11	21	+10V REFERENCE OUT
5	BIT 10	20	ANALOG INPUT
6	BIT 9	19	ANALOG GROUND
7	BIT 8	18	BIT 1 (MSB)
8	BIT 7	17	BIT 2
9	BIT 6	16	START CONVERT
10	BIT 5	15	EOC
11	BIT 4	14	DIGITAL GROUND
12	BIT 3	13	$+5 V ~ S U P P L Y ~$

BLOCK DIAGRAM

Figure 1. ADS-926 Functional Block Diagram

ABSOLUTE MAXIMUM RATINGS			PHYSICAL/ENVIRONMENTAL				
PARAMETERS	LIMITS	UNITS	PARAMETERS	MIN.	TYP.	MAX.	UNITS
+12V/+15V Supply (Pin 22)	0 to +16	Volts	Operating Temp. Range, Case				
-12V/-15V Supply (Pin 24)	0 to -16	Volts	ADS-926MC, GC	0	-	+70	${ }^{\circ} \mathrm{C}$
+5V Supply (Pin 13)	0 to +6	Volts	ADS-926MM, GM	-55	-	+125	${ }^{\circ} \mathrm{C}$
Digital Input (Pin 16)	-0.3 to + VdD +0.3	Volts	Thermal Impedance				
Analog Input (Pin 20)	± 15	Volts	$\theta \mathrm{jc}$	-	6	-	${ }^{\circ} \mathrm{C} /$ Watt
Lead Temperature (10 seconds)	+300	${ }^{\circ} \mathrm{C}$	өca	-	24	-	${ }^{\circ} \mathrm{C} /$ Watt
			Storage Temperature Range	-65	-	+150	${ }^{\circ} \mathrm{C}$
			Package Type	24-pin, metal-sealed, ceramic DDIP or SMT			
			Weight	0.42 ounces (12 grams)			

FUNCTIONAL SPECIFICATIONS
$\left(T_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \pm \mathrm{VCC}= \pm 15 \mathrm{~V}(\right.$ or $\pm 12 \mathrm{~V}),+\mathrm{VDD}=+5 \mathrm{~V}, 500 \mathrm{kHz}$ sampling rate, and a minimum 1 minute warmup (1) unless otherwise specified.)

ANALOG INPUT	$+25^{\circ} \mathrm{C}$			$0 \mathrm{TO}+70^{\circ} \mathrm{C}$			$-55 \mathrm{TO}+125^{\circ} \mathrm{C}$			UNITS
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Input Voltage Range (2)	-	± 5	-	-	± 5	-	-	± 5	-	Volts
Input Resistance	-	1	-	-	1	-	-	1	-	$\mathrm{k} \Omega$
Input Capacitance	-	7	15	-	7	15	-	7	15	pF
DIGITAL INPUT										
Logic Levels										
Logic "1"	+2.0	-	-	+2.0	-	-	+2.0	-	-	Volts
Logic "0"	-	-	+0.8	-	-	+0.8	-	-	+0.8	Volts
Logic Loading "1"	-	-	+20	-	-	+20	-	-	+20	$\mu \mathrm{A}$
Logic Loading "0"	-	-	-20	-	-	-20	-	-	-20	$\mu \mathrm{A}$
Start Convert Positive Pulse Width (3)	175	200	225	175	200	225	175	200	225	ns
STATIC PERFORMANCE										
Resolution	-	14	-	-	14	-	-	14	-	Bits
Integral Nonlinearity (fin $=10 \mathrm{kHz}$)	-	± 0.5	-	-	± 0.75	-	-	± 1.5	-	LSB
Differential Nonlinearity ($\mathrm{fin}=10 \mathrm{kHz}$)	-	± 0.5	+0.95	-	± 0.5	± 0.95	-	± 0.75	+0.99	LSB
Full Scale Absolute Accuracy	-	± 0.08	± 0.15	-	± 0.15	± 0.25	-	± 0.3	± 0.5	\%FSR
Bipolar Zero Error (Tech Note 2)	-	± 0.05	± 0.1	-	± 0.1	± 0.25	-	± 0.15	± 0.3	\%FSR
Bipolar Offset Error (Tech Note 2)	-	± 0.05	± 0.1	-	± 0.1	± 0.25	-	± 0.25	± 0.5	\%FSR
Gain Error (Tech Note 2)	-	± 0.1	± 0.15	-	± 0.15	± 0.25	-	± 0.25	± 0.5	\%FSR
No Missing Codes (fin $=10 \mathrm{kHz}$)	14	-	-	14	-	-	14	-	-	Bits
DYNAMIC PERFORMANCE										
Peak Harmonics (-0.5dB)										
dc to 100kHz	-	-92	-88	-	-90	-85	-	-88	-81	dB
100 kHz to 250 kHz	-	-90	-85	-	-90	-85	-	-86	-80	dB
Total Harmonic Distortion (-0.5dB)										
dc to 100 kHz	-	-90	-86	-	-89	-82	-	-87	-78	dB
100 kHz to 250kHz	-	-87	-82	-	-87	-82	-	-81	-76	dB
Signal-to-Noise Ratio										
(w/0 distortion, -0.5 dB)										
dc to 100 kHz	78	80	-	78	80	-	74	78	-	dB
100 kHz to 250 kHz	78	80	-	78	80	-	74	77	-	dB
Signal-to-Noise Ratio (4)										
(\& distortion, -0.5 dB)										
dc to 100 kHz	77	79	-	77	79	-	74	78	-	dB
100 kHz to 250 kHz	77	79	-	77	79	-	73	77	-	dB
Two-tone Intermodulation										
Distortion (fin $=100 \mathrm{kHz}$, 240 kHz , $\mathrm{f}=500 \mathrm{kHz}-0.5 \mathrm{~dB}$)										
Noise 240 kHz , $\mathrm{fs}=500 \mathrm{kHz}-0.5 \mathrm{~dB}$)	-	-87	-	-	-86	-	-	-85	-	$\frac{\mathrm{dB}}{\mu \mathrm{V} \mathrm{rms}}$
Input Bandwidth (-3dB)										
Small Signal (-20dB input)	-	7	-	-	7	-	-	7	-	MHz
Large Signal (-0.5 dB input)	-	3	-	-	3	-	-	3	-	MHz
Feedthrough Rejection (fin $=250 \mathrm{kHz}$)	-	84	-	-	84	-	-	84	-	dB
Slew Rate	-	± 40	-	-	± 40	-	-	± 40	-	$\mathrm{V} / \mathrm{\mu}$
Aperture Delay Time	-	± 20	-	-	± 20	-	-	± 20	-	ns
Aperture Uncertainty	-	50	-	-	50	-	-	50	-	ps rms
S/H Acquisition Time										
Overvoltage Recovery Time (5)	-	1400	2000	-	1400	2000	-	1400	2000	ns
A/D Conversion Rate	500	-	-	500	-	-	500	-	-	MHz

www.murata-ps.com

ANALOG OUTPUT	$+25^{\circ} \mathrm{C}$			0 to $+70^{\circ} \mathrm{C}$			-55 to $+125^{\circ} \mathrm{C}$			UNITS
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Internal Reference										
Voltage	+9.95	+10.0	+10.05	+9.95	+10.0	+10.05	+9.95	+10.0	+10.05	Volts
Drift	-	± 5	-	-	± 5	-	-	± 5	-	ppm/ ${ }^{\circ} \mathrm{C}$
External Current	-	-	1.5	-	-	1.5	-	-	1.5	mA
DIGITAL OUTPUTS										
Logic Levels										
Logic "1"	+2.4	-	-	+2.4	-	-	+2.4	-	-	Volts
Logic "0"	-	-	+0.4	-	-	+0.4	-	-	+0.4	Volts
Logic Loading "1"	-	-	-4	-	-	-4	-	-	-4	mA
Logic Loading "0"	-	-	+4	-	-	+4	-	-	+4	mA
Delay, Falling Edge of EOC to										
Output Coding					set Binary					
POWER REQUIREMENTS , $\pm 15 \mathrm{~V}$										
Power Supply Ranges										
+15V Supply	+14.5	+15.0	+15.5	+14.5	+15.0	+15.5	+14.5	+15.0	+15.5	Volts
-15V Supply	-14.5	-15.0	-15.5	-14.5	-15.0	-15.5	-14.5	-15.0	-15.5	Volts
+5V Supply	+4.75	+5.0	+5.25	+4.75	+5.0	+5.25	+4.75	+5.0	+5.25	Volts
Power Supply Currents										
+15V Supply	-	+41	+63	-	+41	+63	-	+41	+63	mA
-15V Supply	-	-23	-40	-	-23	-40	-	-23	-40	mA
+5V Supply	-	+71	+85	-	+71	+85	-	+71	+85	mA
Power Dissipation	-	1.4	1.75	-	1.4	1.75	-	1.4	1.75	Watts
Power Supply Rejection	-	-	± 0.02	-	-	± 0.02	-	-	± 0.02	\%FSR/\%V
POWER REQUIREMENTS, $\pm 12 \mathrm{~V}$										
Power Supply Ranges										
+12V Supply	+14.5	+15.0	+15.5	+14.5	+15.0	+15.5	+14.5	+15.0	+15.5	Volts
-12V Supply	-14.5	-15.0	-15.5	-14.5	-15.0	-15.5	-14.5	-15.0	-15.5	Volts
+5V Supply	+4.75	+5.0	+5.25	+4.75	+5.0	+5.25	+4.75	+5.0	+5.25	Volts
Power Supply Currents										
+12V Supply	-	+41	+60	-	+41	+60	-	+41	+60	mA
-12V Supply	-	-23	-40	-	-23	-40	-	-23	-40	mA
+5V Supply	-	+71	+85	-	+71	+85	-	+71	+85	mA
Power Dissipation	-	1.3	1.6	-	1.3	1.6	-	1.3	1.6	Watts
Power Supply Rejection	-	-	± 0.02	-	-	± 0.02	-	-	± 0.02	\%FSR/\%V

Footnotes:
(1) All power supplies must be on before applying a start convert pulse. All supplies and the clock (START CONVERT) must be present during warmup periods. The device must be continuously converting during this time.
(2) See Ordering Information for 0 to +10 V input range. Contact DATEL for availability of other input voltage ranges.
(3) A 500 kHz clock with a 200 ns wide start convert pulse is used for all production testing. For applications requiring less than a 500 kHz sampling rate, wider start convert pulses can be used. See Timing Diagram for more details.
(4) Effective bits is equal to:
$\frac{(\text { SNR }+ \text { Distortion })-1.76+\left[20 \log \frac{\text { Full Scale Amplitude }}{\text { Actual Input Amplitude }}\right]}{6.02}$
(5) This is the time required before the A / D output data is valid after the analog input is back within the specified range.

TECHNICAL NOTES

1. Obtaining fully specified performance from the ADS-926 requires careful attention to pc-card layout and power supply decoupling. The device's analog and digital ground systems are connected to each other internally. For optimal performance, tie all ground pins (14, 19 and 23) directly to a large analog ground plane beneath the package.
Bypass all power supplies and the REFERENCE OUTPUT (pin 21) to ground with $4.7 \mu \mathrm{~F}$ tantalum capacitors in parallel with $0.1 \mu \mathrm{~F}$ ceramic capacitors. Locate the bypass capacitors as close to the unit as possible. If the userinstalled offset and gain adjusting circuit shown in Figure 2 is used, also locate it as close to the ADS-926 as possible.
2. The ADS-926 achieves its specified accuracies without the need for external calibration. If required, the device's small initial offset and gain errors
can be reduced to zero using the input circuit of Figure 2. When using this circuit, or any similar offset and gain-calibration hardware, make adjustments following warmup. To avoid interaction, always adjust offset before gain.
3. When operating the ADS-926 from $\pm 12 \mathrm{~V}$ supplies, do not drive external circuitry with the REFERENCE OUTPUT. The reference's accuracy and drift specifications may not be met, and loading the circuit may cause accuracy errors within the converter.
4. Applying a start convert pulse while a conversion is in progress $(\overline{\mathrm{EOC}}=$ logic "1") initiates a new and inaccurate conversion cycle. Data from the interrupted and subsequent conversions will be invalid.

CALIBRATION PROCEDURE (Refer to Figures 2 and 3)

Any offset and/or gain calibration procedures should not be implemented until devices are fully warmed up. To avoid interaction, offset must be adjusted before gain. The ranges of adjustment for the circuit of Figure 2 are guaranteed to compensate for the ADS-926's initial accuracy errors and may not be able to compensate for additional system errors.
All fixed resistors in Figure 2 should be metal-film types, and multiturn potentiometers should have TCR's of $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ or less to minimize drift with temperature.
A/D converters are calibrated by positioning their digital outputs exactly on the transition point between two adjacent digital output codes. This can be accomplished by connecting LED's to the digital outputs and adjusting until certain LED's "flicker" equally between on and off. Other approaches employ digital comparators or microcontrollers to detect when the outputs change from one code to the next.

For the ADS-926, offset adjusting is normally accomplished at the point where the MSB is a 1 and all other output bits are 0's and the LSB just changes from a 0 to a 1. This digital output transition ideally occurs when the applied analog input is $+1 / 2 \operatorname{LSB}(+305 \mu \mathrm{~V})$.

Figure 2. ADS-926 Calibration Circuit

Gain adjusting is accomplished when all bits are 1's and the LSB just changes from a 1 to a 0 . This transition ideally occurs when the analog input is at +full scale minus $11 / 2$ LSB's $(+4.999085 \mathrm{~V})$.

Zero/Offset Adjust Procedure

1. Apply a train of pulses to the START CONVERT input (pin 16) so the converter is continuously converting. If using LED's on the outputs, a 200 kHz conversion rate will reduce flicker.
2. Apply $+305 \mu \mathrm{~V}$ to the ANALOG INPUT (pin 20).
3. Adjust the offset potentiometer until the output bits are a 1 and all 0 's and the LSB flickers between 0 and 1.

Gain Adjust Procedure

1. 2. Apply +4.999085 V to the ANALOG INPUT (pin 20).
1. Adjust the gain potentiometer until the output bits are all 1 's and the LSB flickers between 1 and 0 .

Table 1. Zero and Gain Adjust

INPUT VOLTAGE RANGE	ZERO ADJUST $+1 / 2$ LSB	GAIN ADJUST + FS $-11 / 2$ LSB
$\pm 5 \mathrm{~V}$	$+305 \mu \mathrm{~V}$	+4.999085 V

Table 2. Output Coding

OUTPUT CODING	INPUT RANGE $\pm 5 \mathrm{~V}$	BIPOLAR SCALE
MSB LSB		
11111111111111	+4.99939	+FS -1 LSB
11100000000000	+3.75000	+3/4 FS
11000000000000	+2.50000	+1/2FS
10000000000000	0.00000	0
01000000000000	-2.50000	-1/2FS
00100000000000	-3.75000	-3/4FS
00000000000001	-4.99939	-FS +1 LSB
00000000000000	-5.00000	-FS

Coding is offset binary; $1 \mathrm{LSB}=610 \mu \mathrm{~V}$.

Figure 3. Typical ADS-926 Connection Diagram

THERMAL REQUIREMENTS

All DATEL sampling A/D converters are fully characterized and specified over operating temperature (case) ranges of 0 to $+70^{\circ} \mathrm{C}$ and -55 to $+125^{\circ} \mathrm{C}$. All room-temperature ($\mathrm{TA}=+25^{\circ} \mathrm{C}$) production testing is performed without the use of heat sinks or forced-air cooling. Thermal impedance figures for each device are listed in their respective specification tables.

These devices do not normally require heat sinks; however, standard precautionary design and layout procedures should be used to ensure
devices do not overheat. The ground and power planes beneath the package, as well as all pcb signal runs to and from the device, should be as heavy as possible to help conduct heat away from the package.

Electrically-insulating, thermally-conductive "pads" may be installed underneath the package. Devices should be soldered to boards rather than "socketed," and of course, minimal air flow over the surface can greatly help reduce the package temperature.

Notes: 1. fs $=500 \mathrm{kHz}$.
2. The ADS-926 is a pulse-triggered device. Its internal operations are triggered by both the rising and falling edges of the start convert pulse. When sampling at 500 kHz , the start pulse must be between 175 and 225 nsec wide. For lower sampling rates, wider start pulses may be used, however, a 50 nsec minimum pulse width low must be maintained.

Figure 4. ADS-926 Timing Diagram
www.murata-ps.com

(fs $=500 \mathrm{kHz}$, fin $=240 \mathrm{kHz}, \mathrm{Vin}=-0.5 \mathrm{~dB}, 16,384-$ point FFT)
Figure 6. ADS-926 FFT Analysis

Figure 7. ADS-926 Histogram and Differential Nonlinearity

ORDERING INFORMATION				
MODEL NUMBER	OPERATING TEMP. RANGE	ANALOG INPUT		ACCESSORIES
ADS-926MC	0 to $+70^{\circ} \mathrm{C}$	Bipolar ($\pm 5 \mathrm{~V}$)	ADS-B926/927	Evaluation Board (without ADS-926)
ADS-926MM	-55 to $+125^{\circ} \mathrm{C}$	Bipolar ($\pm 5 \mathrm{~V}$)	HS-24	Heat Sinks for all ADS-916/926 DDIP models.
ADS-926/883	-55 to $+125^{\circ} \mathrm{C}$	Bipolar ($\pm 5 \mathrm{~V}$)	Receptacles for PC board mounting can be ordered through AMP Inc. Part \#3-331272-8 (Component Lead Socket), 24 required. For MIL-STD-883 product specifications, contact DATEL. * For information, see ADS-916 data sheet.	
ADS-926GC	0 to $+70^{\circ} \mathrm{C}$	Bipolar ($\pm 5 \mathrm{~V}$)		
ADS-926GM	-55 to $+125^{\circ} \mathrm{C}$	Bipolar ($\pm 5 \mathrm{~V}$)		
ADS-916MC	0 to $+70^{\circ} \mathrm{C}$	Unipolar (0 to +10V)*		
ADS-916MM	-55 to $+125^{\circ} \mathrm{C}$	Unipolar (0 to +10V)*		
ADS-916GC	0 to $+70^{\circ} \mathrm{C}$	Unipolar (0 to +10V)*		
ADS-916GM	-55 to $+125^{\circ} \mathrm{C}$	Unipolar (0 to +10V)*		

mintata P_{s} Murata Power Solutions

Murata Power Solutions, Inc.
11 Cabot Boulevard, Mansfield, MA 02048-1151 U.S.A.
Tel: (508) 339-3000 (800) 233-2765 Fax: (508) 339-6356
www.murata-ps.com email: sales@murata-ps.com ISO 9001 and 14001 REGISTERED
07/24/09
Murata Power Solutions, Inc. makes no representation that the use of its products in the circuits described herein, or the use of other technical information contained herein, will not infringe upon existing or future patent rights. The descriptions contained herein do not imply the granting of licenses to make, use, or sell equipment constructed in accordance therewith. Specifications are subject to change without notice.

USA: Mansfield (MA), Tel: (508) 339-3000, email: sales@murata-ps.com
Canada: Toronto, Tel: (866) 740-1232, email: toronto@murata-ps.com
UK: Milton Keynes, Tel: +44 (0)1908 615232, email: mk@murata-ps.com
France: Montigny Le Bretonneux, Tel: +33 (0)1 346001 01, email: france@murata-ps.com
Germany: München, Tel: +49 (0)89-544334-0, email: munich@murata-ps.com
Japan: Tokyo, Tel: 81-3-3779-1031, email: japan@murata-ps.com Kyoto, Tel: 81-75-955-7269, email: japan@murata-ps.com

China: Shanghai, Tel: +86 215027 3678, email: shanghai@murata-ps.com Guangzhou, Tel: +86 208221 8066, email: guangzhou@murata-ps.com
Singapore: Parkway Centre, Tel: +65 6348 9096, email: singapore@murata-ps.com

