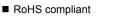
July 2006

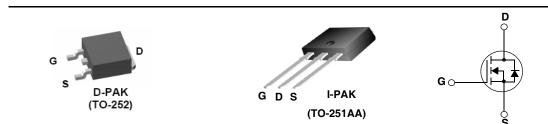

FDD8580/FDU8580 N-Channel PowerTrench[®] MOSFET

FAIRCHILD

FDD8580/FDU8580 N-Channel PowerTrench[®] MOSFET 20V, 35A, 9mΩ

Features

- Max $r_{DS(on)} = 9m\Omega$ at $V_{GS} = 10V$, $I_D = 35A$
- Max $r_{DS(on)}$ =13m Ω at V_{GS} = 4.5V, I_D = 33A
- Low gate charge: Q_{g(TOT)} = 19nC(Typ), V_{GS} = 10V
- Low gate resistance
- 100% Avalanche tested



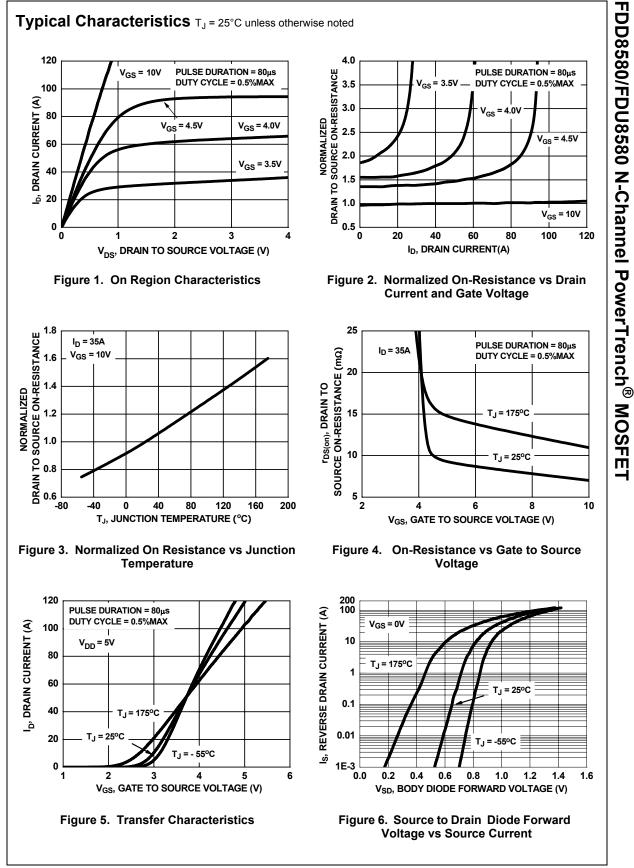
General Description

This N-Channel MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized for low gate charge, low $r_{DS(on)}$ and fast switching speed.

Application

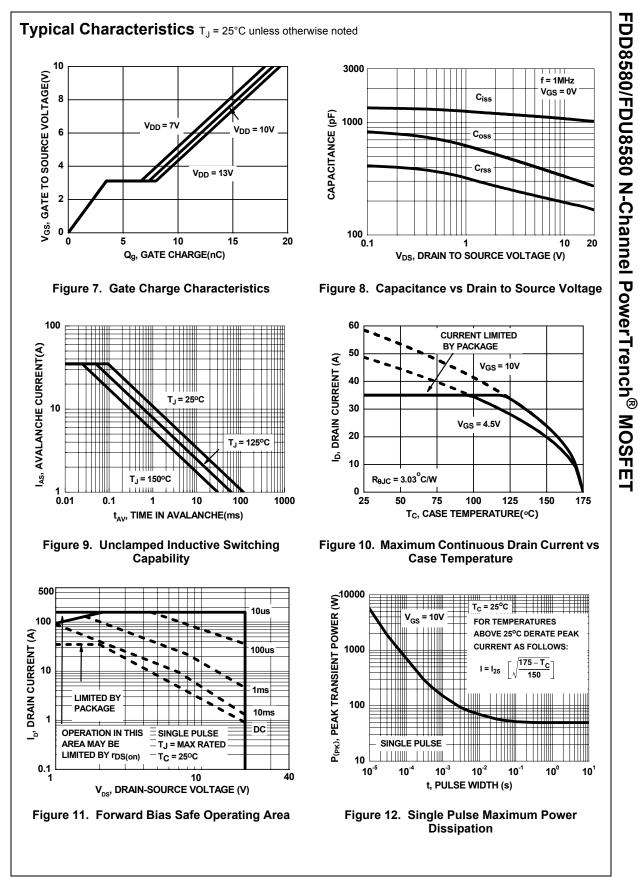
- Vcore DC-DC for Desktop Computers and Servers
- VRM for Intermediate Bus Architecture

MOSFET Maximum Ratings $T_C = 25^{\circ}C$ unless otherwise noted

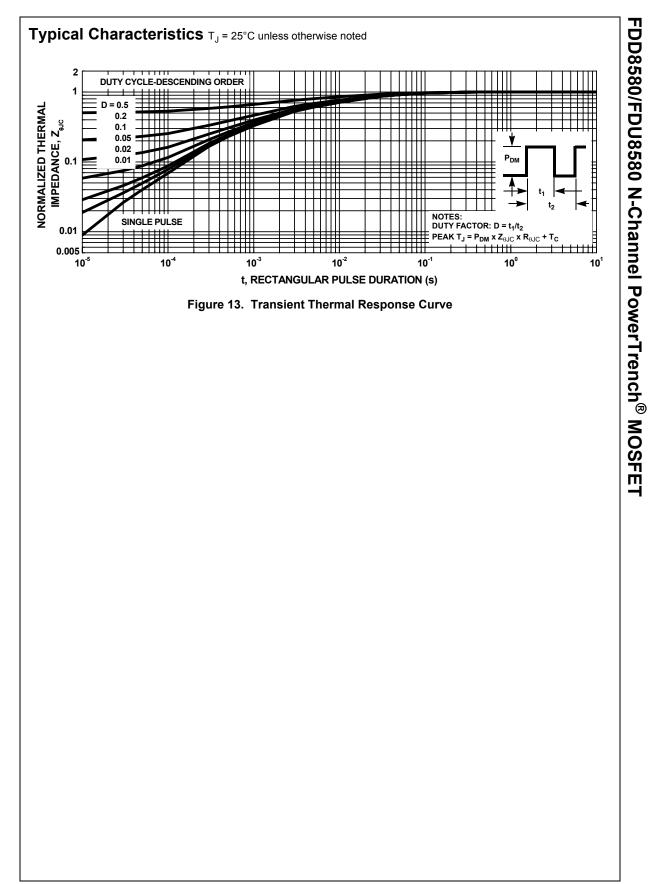

Symbol	Parameter		Ratings	Units
V _{DS}	Drain to Source Voltage		20	V
V _{GS}	Gate to Source Voltage		±20	V
ID	Drain Current -Continuous (Package Limited)		35	
	-Continuous (Die Limited)		58	Α
	-Pulsed	(Note 1)	159	
E _{AS}	Single Pulse Avalanche Energy	(Note 2)	66	mJ
P _D	Power Dissipation		49.5	W
T _J , T _{STG}	Operating and Storage Temperature		-55 to 175	°C

$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case TO-252, TO-251	3.03	°C/W
R_{\thetaJA}	Thermal Resistance, Junction to Ambient TO-252, TO-251	100	°C/W
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient TO-252,1in ² copper pad area	52	°C/W

Package Marking and Ordering Information


Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDD8580	FDD8580	TO-252AA	13"	12mm	2500 units
FDU8580	FDU8580	TO-251AA	N/A(Tube)	N/A	75 units

Symbol	Parameter	Test Conditions	Min	Тур	Мах	Units
Off Chara	cteristics					
BV _{DSS}	Drain to Source Breakdown Voltage	I _D = 250μA, V _{GS} = 0V	20			V
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient	$I_D = 250 \mu A$, referenced to $25^{\circ}C$		17.3		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 16V,$ $V_{GS} = 0V$ $T_J = 150^{\circ}C$			1 250	μA
I _{GSS}	Gate to Source Leakage Current	V _{GS} = ±20V			±100	nA
On Chara	cteristics					
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu A$	1.2	1.8	2.5	V
$\frac{\Delta V_{GS(th)}}{\Delta T_{.1}}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = 250 \mu A$, referenced to $25^{\circ}C$		-6.3	2.0	mV/°C
<u> </u>		V _{GS} = 10V, I _D = 35A		6.6	9.0	
r	Drain to Source On Resistance	V _{GS} = 4.5V, I _D = 33A		9.3	13.0	mΩ
r _{DS(on)}		$V_{GS} = 10V, I_D = 35A$ T _{.1} = 175°C		10.6	14.5	
9 _{FS}	Forward Transcondductance	V _{DS} = 5V,I _D = 35A		61		S
Dynamic	Characteristics					
C _{iss}	Input Capacitance			1085	1445	pF
C _{oss}	Output Capacitance	V _{DS} = 10V, V _{GS} = 0V,		340	450	pF
C _{rss}	Reverse Transfer Capacitance	f = 1MHz		205	310	pF
R _g	Gate Resistance	f = 1MHz		1.3		Ω
	g Characteristics			1		
	Turn-On Delay Time			7	14	ns
t _r	Rise Time	V _{DD} = 10V, I _D = 35A		11	20	ns
t _{d(off)}	Turn-Off Delay Time	-V _{GS} = 10V, R _{GS} = 27Ω		59	94	ns
t _f	Fall Time	_		34	54	ns
Q _{g(TOT)}	Total Gate Charge at 10V	V _{GS} = 0V to 10V		19	27	nC
$Q_{g(5)}$	Total Gate Charge at 5V	$V_{GS} = 0V \text{ to } 5V$ $V_{DD} = 10V$ $I_D = 35A$		10	14	nC
Q_{gs}	Gate to Source Gate Charge	$I_{\rm D} = 35A$		3.5	-	nC
<u>∽gs</u> Q _{gd}	Gate to Drain "Miller"Charge	I _g = 1.0mA		3.9		nC
	urce Diode Characteristics	1		1	1	1
V	Source to Drain Diode Forward Voltage	V _{GS} = 0V, I _S = 15A		0.95	1.25	- V
V _{SD}				0.85	1.2	
t	Reverse Recovery Time	I _F = 35A, di/dt = 100A/μs		26	39	ns
t _{rr} Q _{rr}	Reverse Recovery Charge	I _F = 35A, di/dt = 100A/μs		19	29	nC



FDD8580/FDU8580 Rev. A

www.fairchildsemi.com

FDD8580/FDU8580 Rev. A

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™ ActiveArray™ Bottomless™ Build it Now[™] CoolFET™ CROSSVOLT™ DOME™ EcoSPARK™ E²CMOS™ EnSigna™ FACT™ FAST® FASTr™ FPS™ FRFET™

FACT Quiet Series™ GlobalOptoisolator™ GTO™ HiSeC™ I²C™ i-Lo™ ImpliedDisconnect[™] IntelliMAX[™] ISOPLANAR™ LittleFET™ MICROCOUPLER™ MicroFET™ MicroPak™ MICROWIRE™ MSX™ MSXPro™

OCX™ OCXPro™ **OPTOLOGIC**[®] OPTOPLANAR™ PACMAN™ POP™ Power247™ PowerEdge™ PowerSaver™ PowerTrench® **QFET**® QS™ QT Optoelectronics[™] Quiet Series[™] RapidConfigure[™] RapidConnect[™] µSerDes™ ScalarPump™

SILENT SWITCHER® SMART START™ SPM™ Stealth™ SuperFET™ SuperSOT™-3 SuperSOT[™]-6 SuperSOT[™]-8 SyncFET™ ТСМ™ TinyBoost™ TinyBuck™ TinyPWM™ TinyPower™ TinyLogic® TINYOPTO™ TruTranslation™ UHC™

UniFET™ **UltraFET**® VCX™

Wire™

FDD8580/FDU8580 N-Channel PowerTrench[®] MOSFE

Across the board. Around the world.™

The Power Franchise[®]

Programmable Active Droop™

DISCLAIMER

DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S VIENT RIGHTS FOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.