

N-Channel Depletion-Mode Vertical DMOS FETs

Features

- High input impedance
- Low input capacitance
- Fast switching speeds
- Low on resistance
- Free from secondary breakdown
- Low input and output leakage

Applications

- Normally-on switches
- Solid state relays
- Converters
- Linear amplifiers
- Constant current sources
- Power supply circuits
- Telecom

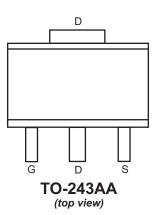
General Description

This low threshold depletion-mode (normally-on) transistor utilizes an advanced vertical DMOS structure and Supertex's well-proven silicon-gate manufacturing process. This combination produces a device with the power handling capabilities of bipolar transistors and with the high input impedance and positive temperature coefficient inherent in MOS devices. Characteristic of all MOS structures, this device is free from thermal runaway and thermally-induced secondary breakdown.

Supertex's vertical DMOS FETs are ideally suited to a wide range of switching and amplifying applications where high breakdown voltage, high input impedance, low input capacitance, and fast switching speeds are desired.

Ordering Information

BV _{DSX} /	R _{DS(ON)}	I _{nss}	Package Options
BV _{DGX}	(max)	'ɒss (min)	TO-243AA1
350V	10Ω	200mA	DN3535N8
		ZUUIIIA	DN3535N8-G



Absolute Maximum Ratings

Parameter	Value
Drain-to-source voltage	BV _{DSX}
Drain-to-gate voltage	BV_{DGX}
Gate-to-source voltage	±20V
Operating and storage temperature	-55°C to +150°C
Soldering temperature*	300°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to device ground.

Package Option

⁻G indicates package is RoHS compliant ('Green')

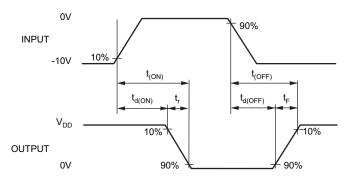
¹Same as SOT-89. Products shipped on 2000 piece carrier tape reels.

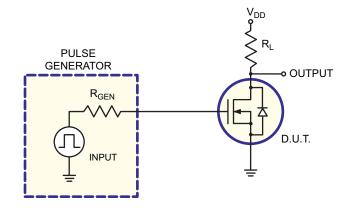
^{*}Distance of 1.6mm from case for 10 seconds.

Thermal Characteristics

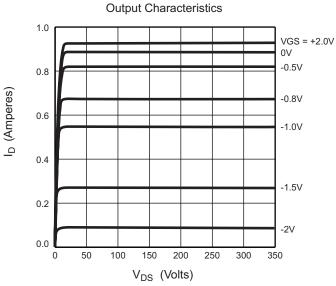
Package	I _D (continuous) ¹	I _D (pulsed)	Power Dissipation @T _A = 25°C	Θ _{jc} (°C/W)	Θ _{ja} (°C/W)	l _{DR} ¹	I _{DRM}
TO-243AA	230mA	500mA	1.6W ²	15	78 ²	230mA	500mA

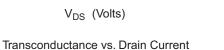
Notes:

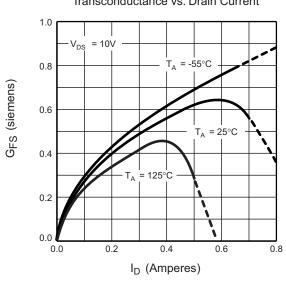

- 1. I_D (continuous) is limited by max rated T_T .
- 2. Mounted on FR4 board, 25mm x 25mm x 1.57mm

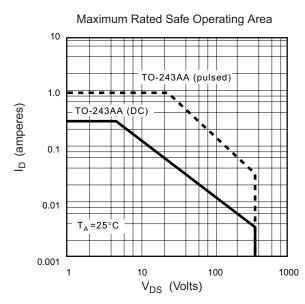

Electrical Characteristics

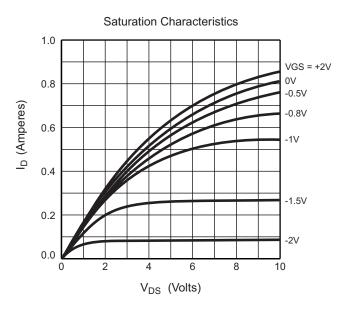
Symbol	Parameter	Min	Тур	Max	Units	Conditions	
BV _{DSS}	Drain-to-source breakdown voltage	350	-	-	V	$V_{GS} = -5.0V, I_{D} = 1.0 \mu A$	
V _{GS(OFF)}	Gate-to-source OFF voltage	-1.5	-	-3.5	V	$V_{DS} = 15V, I_{D} = 10\mu A$	
$\Delta V_{GS(OFF)}$	Change in V _{GS(OFF)} with temperature	-	-	4.5	mV/°C	$V_{DS} = 15V, I_{D} = 10\mu A$	
I _{GSS}	Gate body leakage current	-	-	100	nA	$V_{GS} = \pm 20V, V_{DS} = 0V$	
		-	-	1.0	μA	V_{DS} = Max rating, V_{GS} = -5.0V	
I _{D(OFF)}	Drain-to-source leakage current	-	-	1.0	mA	$V_{DS} = 0.8$ Max Rating, $V_{GS} = -5.0$ V, $T_{A} = 125$ °C	
I _{DSS}	Saturated drain-to-source current	200	-	-	mA	V _{GS} = 0V, V _{DS} = 15V	
R _{DS(ON)}	Static drain-to-source ON-state resistance	-	-	10	Ω	$V_{GS} = 0V, I_{D} = 150mA$	
$\Delta R_{DS(ON)}$	Change in $R_{\scriptscriptstyle DS(ON)}$ with temperature	-	-	1.1	%/°C	$V_{GS} = 0V, I_{D} = 150mA$	
G _{FS}	Forward transconductance	200	-	-	mmho	$V_{DS} = 10V, I_{D} = 100mA$	
C _{ISS}	Input capacitance	-	-	360		$V_{GS} = -5.0V, V_{DS} = 25V,$ f = 1MHz	
C _{oss}	Common source output capacitance	-	-	40	pF		
C _{RSS}	Reverse transfer capacitance	-	-	10			
t _{d(ON)}	Turn-ON delay time	-	-	15		$V_{DD} = 25V,$ $I_{D} = 150 \text{mA},$ $R_{GEN} = 25\Omega,$ $V_{GS} = 0V \text{ to -10V}$	
t _r	Rise time	-	-	20	ne		
t _{d(OFF)}	Turn-OFF delay time	-	-	20	ns		
t _f	Fall time	-	-	30			
V _{SD}	Diode forward voltage drop	-	-	1.8	V	$V_{GS} = -5.0V, I_{SD} = 150mA$	
t _{rr}	Reverse recovery time	-	800	-	ns	$V_{GS} = -5.0V, I_{SD} = 150mA$	

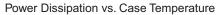

- 1.All D.C. parameters 100% tested at 25° C unless otherwise stated. (Pulse test: 300μ s pulse, 2% duty cycle.) 2.All A.C. parameters sample tested.

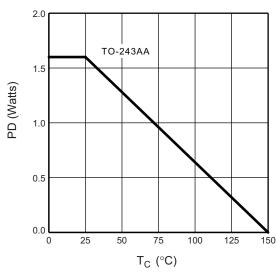

Switching Waveforms and Test Circuit

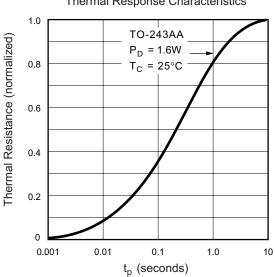


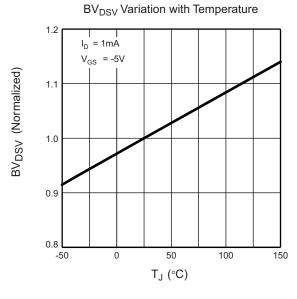


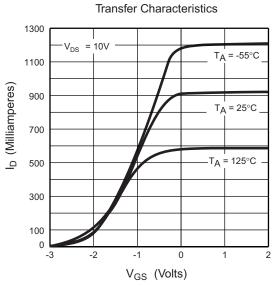

Typical Performance Curves

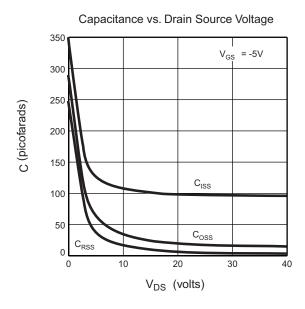


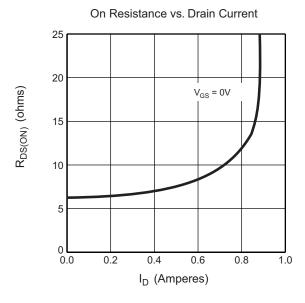


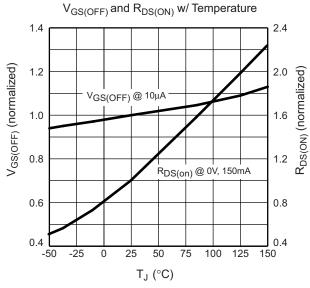


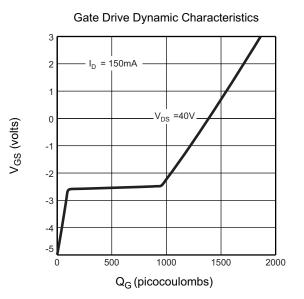


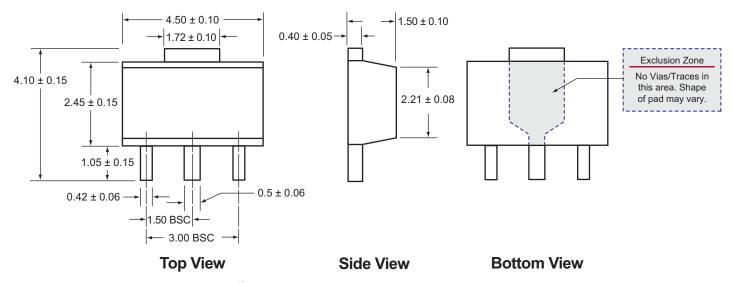



Thermal Response Characteristics




Typical Performance Curves (cont.)





3-Lead TO-243AA (SOT-89) Surface Mount Package (N8)

otes:

All dimensions are in millimeters; all angles in degrees.

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to http://www.supertex.com/packaging.html.)

Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell its products for use in such applications, unless it receives an adequate "product liability indemnification insurance agreement". **Supertex** does not assume responsibility for use of devices described and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions or inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications, refer to the **Supertex** website: http://www.supertex.com.

©2007 **Supertex inc.** All rights reserved. Unauthorized use or reproduction is prohibited.

