

- Designed to PHS Handset Phone Selectivity in 243.95 MHz
- Low-Loss, Coupled-Resonator Quartz Design
- Simple External Impedance Matching
- Ultra Miniature Ceramic DCC6 SMD Package

SF5301

Absolute Maximum Rating (Ta=25°C)							
Parameter		Rating	Unit				
Input Power Level	P_{in}	10	dBm				
DC Voltage VDC Between Any Two Pins	$V_{ m DC}$	12	V				
Operating Temperature Range	T_{A}	-10 ~ +65	°C				
Storage Temperature Range	$T_{ m stg}$	-40 ~ + 85	°C				

Electronic Characteristics						
Parameter		Sym	Minimum	Typical	Maximum	Unit
Nominal Frequency (at 25°C) (Center frequency between 3dB point)		f _C	NS	243.95	NS	MHz
Insertion Loss Attenuation		IL	-	2.0	4.0	dB
3dB Passband		BW ₃	-	585	-	KHz
Amplitude Ripple		α	-	0.1	1.0	dB
Group Delay Ripple		-	-	0.28	1.0	μS
Rejection	at f _C - 21.6 MHz	-	60	-	-	dB
	at f _C - 1.2 MHz	-	40	-	-	dB
	at f _C - 0.6 MHz		25	35	-	dB
	at f_C + 0.6 MHz		25	33	-	dB
	at f _C + 1.2 MHz		38	45	-	dB
	at f _C + 21.6 MHz	-	55	-	-	dB
Frequency Aging Absolute Value during the First Year		fA	-	-	10	ppm/yr
DC Insulation Resistance Between any Two Pins		-	1.0	-	-	MΩ

NS = Not Specified

Notes:

- The frequency f_C is defined as the midpoint between the 3dB frequencies.
- 2. Unless noted otherwise, all measurements are made with the filter installed in the specified test fixture that is connected to a 50Ω test system with VSWR \leq 1.2:1. The test fixture L and C are adjusted for minimum insertion loss at the filter center frequency, $f_{\mathbb{C}}$. Note that insertion loss, bandwidth, and passband shape are dependent on the impedance matching component values and quality.
- Unless noted otherwise, specifications apply over the entire specified operating temperature range.
- The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- All equipment designs utilizing this product must be approved by the appropriate government agency prior to manufacture or sale.
- Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- For questions on technology, prices and delivery please contact our sales offices or e-mail sales@vanlong.com.

Package Dimensions (DCC6)

Electrical Connections

Terminals	Connection	
2	Input	
5	Output	
1,3,4,6	Ground	

Package Dimensions

Dimensions	Nom (mm)	Dimensions	Nom (mm)
Α	1.90	Е	3.80
В	0.64	F	3.80
С	1.00	G	1.20
D	1.27		

Marking

- 1. F5301 Part Code
- 2. Date Code:

Y: Last digit of year WW: Week No.

Test Circuit

C = 3.5 pF Ls1 = Ls2 = 64 nH

Typical Frequency Response

Phone: +86 10 6301 4184

Fax: +86 10 6301 9167

Email: sales@vanlong.com

Web: http://www.vanlong.com