
CoreCORDIC CORDIC RTL Generator 

Product Summary

Intended Use
• COordinate Rotation DIgital Computer (CORDIC)

Rotator Function for Actel FPGAs

Key Features
• Vector Rotation – Conversion of Polar Coordinates

to Rectangular Coordinates

• Vector Translation – Conversion of Rectangular
Coordinates to Polar Coordinates

• Sine and Cosine Calculation 

• Vector (X, Y) Magnitude  and Phase
(arctan[X /Y]) Calculation

• 8-Bit to 48-Bit Configurable Word Size

• 8 to 48 Configurable Number of Iterations 

• Parallel Pipelined Architecture for the Fastest
Calculation

• Bit-Serial Architecture for the Smallest Area

• Word-Serial Architecture for Moderate Speed and
Area

• Word Parallel Data I/Os

Supported Families
• Fusion

• ProASIC®3/E

• ProASICPLUS ®

• Axcelerator®

• RTAX-S

• SX-A

• RTSX-S

Core Deliverables
• Full Version

– CoreCORDIC RTL Generator. Generates User-
Defined CORDIC Model and Test Harness. Fully
Supported in the Actel Libero® Integrated
Design Environment (IDE) 

• Evaluation Version

– Supports CORDIC Engine and Test Harness
Generation with Limited Parameters. Fully
Supported in Libero IDE. 

Synthesis and Simulation Support
• Libero IDE

• Synthesis: Synplicity®, Synopsys® (Design
Compiler/FPGA Compiler), Exemplar™

• Simulation: OVI-Compliant Verilog Simulators and
Vital-Compliant VHDL Simulators.

General Description
CoreCORDIC is an RTL generator that produces an Actel
FPGA–optimized CORDIC engine. The CORDIC algorithm
by J. Volder provides an iterative method of performing
vector rotations using shifts and adds only. The articles
listed in "References" on page 12 present a detailed
description of the algorithm. 

Depending on the configuration defined by the user, the
resulting module implements pipelined parallel, word-
serial, or bit-serial architecture in one of two major
modes: rotation or vectoring. In rotation mode, the
CORDIC rotates a vector by a specified angle. This mode
is used to convert polar coordinates to Cartesian
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CoreCORDIC CORDIC RTL Generator
coordinates, for general vector rotation, and also to
calculate sine and cosine functions (see Figure 1).

"Appendix I" on page 14 presents mathematical
coordinate conversion formulae, and "Appendix II" on
page 15 describes examples of a few of the most used
CORDIC modes.  

In vectoring mode, the CORDIC rotates the input vector
towards the x axis while accumulating a rotation angle.
Vectoring mode is used to convert Cartesian vector
coordinates to polar coordinates; i.e., to calculate the
magnitude and phase of the input vector (Figure 2). 

The CORDIC results, such as x, y, and r, are scaled by the
inherent processing gain, K, which depends on number
of iterations and converges to about 1.647 after a few
iterations. The gain is constant for a given number of
iterations. When performing Cartesian/polar coordinate
conversion, the CORDIC computes the results shown in
EQ 1 and EQ 2 in rotation mode.

EQ 1

EQ 2

EQ 3 and EQ 4 show the CORDIC results in vectoring
mode.

 

EQ 3

EQ 4

The gain can be compensated for elsewhere in many
applications when the system includes the CORDIC
engine. To assist a user in doing so, the CoreCORDIC
software computes the precise value of the gain and
displays it on a screen. In the cases when only relative
magnitude is of importance—for example, spectrum
analysis and AM demodulation—the constant gain can
be neglected. When calculating sine/cosine, the CORDIC
gets initialized with a constant reciprocal value of the
processing gain r = 1/K. 

EQ 1 and EQ 2 become

 

Thus, the gain does not impact the sine/cosine results or
the phase output. 

To perform the conversions, the CORDIC processor
implements the iterative CORDIC equations EQ 5
through EQ 7.

EQ 5

EQ 6

EQ 7

The sign-controlling function di takes the values shown
in EQ 8 and EQ 9:

• In rotation mode 

di = –1 if ai < 0, otherwise di = 1

EQ 8

• In vectoring mode 

di = 1 if yi < 0, otherwise di = –1

EQ 9

The input and output data is represented as n-bit words,
where n is a user-defined number in the range from 8 to
48. The number of iterations is also defined by a user in
the same range. The CORDIC result accuracy improves
when the number of iterations is increased, as long as
the number of iterations does not exceed data bit width.
In other words, the bit width limits the number of
meaningful iterations. 

A system that utilizes the CORDIC engine (Figure 3 on page 3) consists of the following:

• A data source generating the vector data to be converted by the CORDIC

• The CORDIC module configured to work in either rotation or vectoring mode

• A data receiver accepting the newly converted vector data

Figure 1 • CORDIC Engine in Rotation Mode

Figure 2 • CORDIC Engine in Vectoring Mode
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CoreCORDIC CORDIC RTL Generator
The negative nGrst signal resets the CORDIC engine and, optionally, the entire system. After the reset (input nGrst
taken high), the CORDIC module is ready to receive data samples to be processed. The module synchronous reset input
rst can be used to bring the CORDIC unit to the ready state at any time after the initial global reset. 

Note: The CORDIC module will lose half-processed data when rst is taken high by the system. 

The data source supplies the CORDIC engine with the data to be converted. Depending on the mode (rotation or
vectoring), the system uses different CORDIC inputs and outputs to enter and obtain the data. Table 1 shows the input/
output signals used in each mode.  

The system accompanies every new pair of the input data samples with the one-bit ldData signal. Upon receiving the
ldData bit, the module assumes the vector coordinates are present on input data busses. Once the CORDIC results are
ready, the engine puts these out, accompanied by the one-bit rdyOut signal. Upon receiving the rdyOut bit, the system
can supply a new pair of input data and generate another ldData signal. 

CoreCORDIC can generate three different CORDIC core implementation architectures and an appropriate testbench: 

• Parallel pipelined

• Word-serial

• Bit-serial

The parallel pipelined architecture provides the fastest speed, whereas the bit-serial architecture provides the smallest
area. The word-serial architecture provides the trade-off of moderate speed and area.

Figure 3 • CORDIC-Based System

Table 1 • CORDIC Connection to the System

Input Data CORDIC Input Output Data CORDIC Output

Common Rotation Modes

Input vector magnitude x0 Output vector coordinate X xn

Constant 0 y0 Output vector coordinate Y yn

Input vector phase a0 N/A an

Rotation Mode: Sine/Cosine Table Generator

Constant reciprocal value of the processing gain r = 1/K x0 sin(θ) xn

Constant 0 y0 cos(θ) yn

Sine/cosine argument θ a0 N/A an

Vectoring Mode

Input vector coordinate X x0 Output vector magnitude r xn

Input vector coordinate Y y0 N/A yn

Constant 0 a0 Output vector phase θ an
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CoreCORDIC CORDIC RTL Generator
CoreCORDIC Device Requirements
Table 2 provides typical utilization and performance data for CoreCORDIC, implemented in various Actel devices with
the CORDIC engine bit resolution set to 24 bits and the number of iterations set to 24. Device utilization and
performance will vary depending upon the architecture chosen and the configuration parameters used. Time-driven
settings were used when synthesizing parallel architectures; area optimization settings were used in other cases. 

The CORDIC core does not utilize on-chip RAM blocks.

Table 2 • CoreCORDIC Device Utilization and Performance 

Device
Engine 

Architecture Mode

Cells or Tiles
Utilization 

%
Clock Rate, 

MHz

Transform 
Time,
nsecComb Seq Total

Fusion Speed Grade –2

AFS600 Bit-serial Rotate 297 110 407 3% 88 6,568

Vector 293 108 401 3% 87 6644

AFS600 Word- serial Rotate 668 103 771 6% 30 833

Vector 660 101 761 6% 27 926

AFS600 Parallel Rotate 11,810 1,884 13,694 99% 46 21.7

ProASIC3/E Speed Grade –2

A3P250 Bit-serial Rotate 297 110 407 7% 83 6,964

Vector 296 108 404 7% 93 6,215

A3P250 Word-serial Rotate 664 103 767 12% 30 833

Vector 658 101 759 12% 26 962

A3P1000 Parallel Rotate 12,541 1,906 14,447 59% 46 21.7

Vector 14,832 1,981 16,813 68% 62 16.1

ProASICPLUS Speed Grade STD

APA150 Bit-serial Rotate 393 108 501 8% 61 9,475

Vector 394 107 501 8% 63 9,175

APA150 Word-serial Rotate 824 114 938 15% 20 1,250

Vector 822 114 936 15% 19 1,316

APA1000 Parallel Rotate 14,301 1,889 16,190 29% 32 31.3

Vector 16,594 1,936 18,530 33% 37 27.0

Axcelerator Speed Grade –2

AX125 Bit-serial Rotate 196 106 302 15% 113 5,115

Vector 185 105 290 14% 115 5,026

AX125 Word-serial Rotate 413 124 537 27% 103 243

Vector 405 133 538 27% 109 229

AX500 Parallel Rotate 4,633 1,832 6,465 80% 130 7.7

Vector 4,617 1,835 6,452 80% 124 8.1

RTAX-S Speed Grade –1

RTAX250S Bit-serial Rotate 196 106 302 8% 92 6,283

Vector 185 105 290 7% 100 5,780

RTAX250S Word-serial Rotate 413 124 537 14% 74 338

Vector 405 133 538 14% 75 333

RTAX1000S Parallel Rotate 4,633 1,832 6,465 36% 89 11.2

Vector 4,617 1,835 6,452 36% 81 12.3

Note: The above data were obtained by typical synthesis and place-and-route methods. Other core parameter settings can result in
different utilization and performance values.
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Architectures

Word-Serial Architecture
Direct implementation of the CORDIC iterative equations (see "References" on page 12) yields the block diagram
shown in Figure 4. The vector coordinates to be converted, or initial values, are loaded via multiplexers into registers
RegX, RegY, and RegA. RegA, along with an adjacent adder/subtractor, multiplexer, and a small arctan LUT, is often
called an angle accumulator. Then on each of the following clock cycles, the registered values are passed through
adders/subtractors and shifters. The results described by EQ 5 through EQ 7 on page 2 are loaded back to the same
registers. Every iteration takes one clock cycle, so that in n clock cycles, n iterations are performed and the converted
coordinates are stored in the registers.   

54SX-A Speed Grade –2

54SX72A Bit-serial Rotate 190 105 295 5% 67 8,627

Vector 195 105 300 5% 71 8,141

54SX72A Word-serial Rotate 656 132 788 13% 55 455

Vector 643 124 767 13% 50 500

RT54SX-S Speed Grade –1

RT54SX72S Bit-serial Rotate 189 104 293 5% 55 10,509

Vector 190 104 294 5% 55 10,509

RT54SX72S Word-serial Rotate 677 132 809 13% 33 758

Vector 664 125 789 13% 34 735

Table 2 • CoreCORDIC Device Utilization and Performance  (Continued)

Device
Engine 

Architecture Mode

Cells or Tiles
Utilization 

%
Clock Rate, 

MHz

Transform 
Time,
nsecComb Seq Total

Note: The above data were obtained by typical synthesis and place-and-route methods. Other core parameter settings can result in
different utilization and performance values.

Figure 4 • Word-Serial CORDIC Block Diagram

Sign Controlling Logic

+/–

RegX

–/+

RegY 

>> i >> i

+/–

RegA

arctan
LUT

Sign ai 

x0

xn

Sign yi

Mode: Rotation/Vectoring

di di

di

yn

y0 a0

an
v2.0 5



CoreCORDIC CORDIC RTL Generator
Depending on the CORDIC mode (rotation or vectoring),
the sign-controlling logic watches either the RegY or the
RegA sign bit. Based on EQ 8 and EQ 9 on page 2, it
decides what type of operation (addition or subtraction)
needs to be performed at every iteration. The arctan LUT
keeps a pre-computed table of the arctan(2-i) values. The
number of entries in the arctan LUT equals the desirable
number of iterations, n.

The word-serial CORDIC engine takes n + 1 clock cycles to
complete a single vector coordinate conversion.       

Parallel Pipelined Architecture
This architecture presents an unrolled version of the
sequential CORDIC algorithm above. Instead of reusing
the same hardware for all iteration stages, the parallel
architecture has a separate hardware processor for every
CORDIC iteration. An example of the parallel CORDIC
architecture configured for rotation mode is shown in
Figure 5. 

Each of the n processors performs a specific iteration,
and a particular processor always performs the same
iteration. This leads to a simplification of the hardware.
All the shifters perform the fixed shift, which means
these can be implemented in the FPGA wiring. Every
processor utilizes a particular arctan value that can also
be hardwired to the input of every angle accumulator.
Yet another simplification is an absence of a state
machine. 

The parallel architecture is obviously faster than the
sequential architecture described in the "Word-Serial
Architecture" section on page 5. It accepts new input
data and puts out the results at every clock cycle. The
architecture introduces a latency of n clock cycles.

Figure 5 • Parallel CORDIC Architecture
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Bit-Serial Architecture
Whenever the CORDIC conversion speed is not an issue,
this architecture provides the smallest FPGA
implementation. For example, in order to initialize a
Sine/Cosine LUT, the bit-serial CORDIC is the solution.
Figure 6 depicts the simplified block diagram of the bit-
serial architecture. The shift registers get loaded with
initial data presented in bit-parallel form, i.e., all bits at
once. The data then shifts to the right, before arriving
the serial adders/subtractors. Every iteration takes m
clock cycles, where m is the CORDIC bit resolution. Serial
shifters are implemented by properly tapping the bits of
the shift registers. The control circuitry (not shown in
Figure 6) provides sign-padding of the shifted serial data
to realize its correct sign extension. The results from the
serial adders return back to the shift registers, so that in
m clock cycles the results of another iteration are stored
in the shift registers. 

A single full CORDIC conversion takes n×m+2 clock
cycles. 

I/O Formats

Q Format Fixed-Point Numbers
CoreCORDIC, as virtually any FPGA DSP core does, utilizes
fixed-point arithmetic. In particular, the numbers the
core operates with are presented as two’s complement
signed fractional numbers. To identify the position of a
binary point separating the integer and fractional
portions of the number, the Q format is commonly used. 

An mQn format number is an (n+1)-bit signed two’s
complement fixed-point number: a sign bit followed by
n significant bits with the binary point placed
immediately to the right of the m most significant bits.
The m MSBs represent the integer part, and (n–m) LSBs
represent the fractional part of the number, called the
mantissa. Table 3 depicts an example of a 1Qn format
number.  

The following sections explain in detail the formats of
the input and output signals. The linear and angular
values are explained separately. The linear signals
include Cartesian coordinates and a vector magnitude.
These come to the CORDIC engine inputs x0 and y0, or
appear on its outputs xn and yn. Since the sine and
cosine functions the CORDIC calculates are essentially the
Cartesian coordinates of the vector, the angular signals
include the vector phase that comes to the CORDIC
engine input a0, or appears on its output an. Both linear
and angular signals utilize mQn formats and appropriate
conversion rules from floating-point to the mQn formats.   

I/O Linear Format
The CoreCORDIC engine utilizes the 1Qn format shown in
Table 3. Though the 1Qn format numbers are capable of
expressing fixed-point numbers in the range from (–2n) to
(2n – 2m–n), the input linear data must be limited to fit
the smaller range from (–2n–1) to (2n–1). In terms of
floating-point numbers, the input must fit the range
from –1.0 to +1.0. For example, the 1Q9 format input
data range is limited by the following 10-bit numbers:

Max input negative number of –1.0:

1100000000 ⇔ 11.00000000

Figure 6 • Bit-Serial CORDIC Architecture
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Table 3 • 1Qn Format Number

Bit 2n Bit 2n–1 Position of the 
Binary Point

Bits [2n–2 : 20]

Sign Integer bit Mantissa

Table 4 • Qn Format Number

Bit 2n Position of the 
Binary Point

Bits [2n–1 : 20]

Sign Mantissa
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CoreCORDIC CORDIC RTL Generator
Max input positive number of +1.0:

0100000000 ⇔ 01.00000000

This precaution is taken to prevent the data overflow
that otherwise could occur as a result of the CORDIC
inherent processing gain. The output data obviously do
not have to fit the limited range.

To convert floating-point linear input data to the 1Qn
format, follow the simple rule in EQ 10:

1Qn Fixed-Point Data = 2n–1 × Floating-Point Data

EQ 10

Here it is assumed the floating-point data are presented
in the range from –1.0 to 1.0. The product on the
right-hand side of EQ 10 contains integer and fractional
parts. The fractional part has to be truncated or
rounded. Table 5 shows a few examples of converting
the floating-point numbers to the 1Q9 format. 

To convert the 1Qn format back to the floating-point
format, use EQ 11.

Floating-Point Data = 1Qn Fixed-Point Data/2n–1

EQ 11

I/O Angular Format
The angle (phase) signals are a0 and an. They are
presented in Qn format, as shown in Table 4 on page 7.
The relation between the floating-point angular value
expressed in radians and the Qn format is shown in EQ 12. 1

Qn Fixed-Point Angle = 2n-1 × Floating-Point Angle/π

EQ 12

In EQ 12, the floating-point angle is measured in radians.
The product on the right-hand side of EQ 10 contains
integer and fractional parts. The fractional part must be
truncated or rounded. 

EQ 13 presents a rule for the conversion from the Qn
format back to the floating-point radian measure.

Floating-Point Angle = Qn Fixed-Point Angle × π /2n–1

EQ 13

The conversion formulae (EQ 12 and EQ 13) support an
important feature that greatly simplifies sine and cosine
table calculations. Such tables usually have power of two
entries (lines). At the same time, they often span angular
values from –π/2 to π/2 radians. Therefore, it is beneficial
to represent the angle of π/2 radians with the power of
two fixed-point number. In particular, when having the
CORDIC engine calculate the sin(θ) and cos(θ) table, it is
sufficient to increment the fixed-point angular argument
θ at each cycle. 

The angular value range is from –π/2 to π/2, or in Q9
format:     

Max input negative number of –π/2:

1100000000 ⇔ .1100000000

Max input positive number of +π/2:

0100000000 ⇔ .0100000000

Table 6 shows a few examples of converting floating-point numbers to Q9 format.  

Table 5 • Floating-Point to 1Q9 Format Conversion

Floating-Point 
Number X P = X × 2(n–1) P Rounded

Common Binary
 Format 1Q9 Format

1.00 256 256 0100000000 01.00000000

0.678915 173.80224 174 0010101101 00.10101101

0.047216 12.087296 12 0000001100 00.00001100

–1.00 –256 –256 1100000000 11.00000000

–0.678915 –173.80224 –174 1101010011 11.01010011

–0.047216 –12.087296 –12 1111110100 11.11110100

1. This format means, literally, the angle of π radians is expressed as the floating-point value of 1.0.

Table 6 • Examples of Angular Value to Fixed-Point Conversion

Floating-Point Angle A (rad) P = A × 2n Common Binary Format Q9 Format (sign.mantissa)

π/2 1.5707963268 256 0100000000 0.100000000

π/4 0.7853981634 128 0010000000 0.010000000

π/256 0.0122718463 2 0000000010 0.000000010
8 v2.0



CoreCORDIC CORDIC RTL Generator
CoreCORDIC Configuration Parameters
CoreCORDIC generates the CORDIC engine RTL code based on parameters set by the user when generating the
module. The core generator supports the variations specified in Table 7.  

I/O Signal Description
Figure 7 shows the CoreCORDIC module pinout. 

–π/2 –1.5707963268 –256 1100000000 1.100000000

–π/4 –0.7853981634 –128 1110000000 1.110000000

–π/256 –0.0122718463 –2 1111111110 1.111111110

Table 7 • Core Generator Parameters

Parameter Name Description Values

module_name Name of the generated RTL code module –

architecture Bit-serial, word-serial, or word parallel architecture 0 (bit-serial), 1 (word-serial), 2
(parallel). Default value = 0.

mode Vector rotation (polar to rectangular coordinate conversion and sine/
cosine calculation) or vector translation (rectangular to polar
conversion)

0 (vector rotation), 1 (vector
translation). Default value = 0.

bit_width I/O data bit width 8–48. Default value = 16.

iterations Number of iterations 8–48. Default value = bit_width.*

fpga_family Family of the Actel FPGA device ax (Axcelerator), apa (ProASICPLUS),
pa3 (ProASIC3), sx (SX-A), af (Fusion)

lang RTL code language vhdl, verilog

Note: *A warning is issued if the number of iterations is set greater than the bit width.

Figure 7 • CoreCORDIC I/O Signals

Table 6 • Examples of Angular Value to Fixed-Point Conversion
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The CoreCORDIC module I/O signal functionality is listed in Table 8. 

Table 8 • I/O Signal Descriptions

Signal Name Direction Description

x0 [bit_width – 1 : 0] Input Input data bus x0. The abscissa of the input vector in the vectoring mode or the magnitude of the
input vector in rotation mode should be placed on this bus. Bit [bit_width – 1] is the MSB. Data
are assumed to be presented in two’s complement format. The other vector coordinates are to be
supplied simultaneously.

y0 [bit_width – 1 : 0] Input Input data bus y0. The ordinate of the input vector in the vectoring mode should be placed on
this bus. In rotation mode, the bus should be grounded or left idle. Bit [bit_width – 1] is the MSB.
Data are assumed to be presented in two’s complement format. The other vector coordinates are
to be supplied simultaneously. 

a0 [bit_width – 1 : 0] Input Input angle data bus a0. The phase of the input vector in the rotation mode should be placed on
this bus. In vectoring mode, the bus should be grounded or left idle. Bit [bit_width – 1] is the
MSB. Data are assumed to be presented in two’s complement format. The other vector
coordinates are to be supplied simultaneously. 

clk Input System clock. Active rising edge.

nGrst Input System asynchronous reset. Active low.

rst Input System/module synchronous reset. Active high. Valid in parallel architecture only. Resets all
registers of the core. 

clkEn Input Clock enable signal. Active high. Valid in word-serial and bit-serial architectures. 

ldData Input Load input data. Indicates that input vector coordinates are ready for the CORDIC engine to be
processed. Active high. Valid in word-serial and bit-serial architectures. 

rdyOut Output Output data (vector coordinates or sine/cosine values) are ready for the data receiver to read.
Active high. Valid in word-serial and bit-serial architectures. 

xn [bit_width-1 : 0] Output Output data bus xn. The abscissa of the output vector in rotation mode or the magnitude of the
output vector in the vectoring mode appears on this bus. Bit [bit_width – 1] is the MSB. Data are
presented in two’s complement format. The other vector coordinates emerge on their respective
output busses simultaneously.

yn [bit_width-1 : 0] Output Output data bus yn. The ordinate of the output vector in rotation mode. Bit [bit_width – 1] is the
MSB. Data are presented in two’s complement format. The other vector coordinates emerge on
their respective output busses simultaneously.

an [bit_width-1 : 0] Output Output data bus an. The phase of the output vector in vectoring mode. Bit [bit_width – 1] is the
MSB. Data are presented in two’s complement format. The other vector coordinates emerge on
their respective output busses simultaneously.
10 v2.0
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I/O Interface and Timing
Upon reset, the CORDIC core returns to its initial state.
Signal nGrst asynchronously resets any architecture.
Other I/O interfaces and timing depend on core
architecture. 

Bit-Serial Architecture Interface and 
Timing
Figure 8 depicts a typical timing diagram for the bit-
serial architecture. Signal ldData resets the bit-serial
CORDIC module and loads a set of data present on the
a0, x0, and y0 input busses. The set of input data is
shown in Figure 8 as In0. Normally, a next ldData signal
has to come after the end of a current CORDIC cycle; i.e.,
after the rdyOut signal appears on the module output. In
the case that the next ldData signal is issued prior to the
end of the current cycle, the CORDIC engine starts a new

computation cycle and discards the incomplete results of
the interrupted cycle. 

Once the CORDIC engine completes calculating the
result, it generates rdyOut signal one clock period in
width. The result on the output busses (an, xn, and yn) is
valid while the rdyOut signal is active. The next ldData
signal can coincide with the rdyOut signal. Obviously a
valid, fresh set of input data, shown as In1 in Figure 8,
must be ready by then. 

One cycle of CORDIC computation = (bit_width × iterations + 2)
clock cycles. 

Signal clkEn can be manipulated as desired. While this
signal is low, the CORDIC engine retains all the data it
has collected or processed so far. Normally, the bit-serial
CORDIC engine is used to fill up the LUT on a power-on
event. Once the CORDIC fulfills this function, a high-level
state machine may disable the clkEn signal. 

Word-Serial Architecture Interface and 
Timing
Figure 9 on page 12 depicts a timing diagram for the
word-serial architecture. It is very similar to the bit-serial
timing diagram. Signal ldData resets the word-serial
CORDIC module and loads the set of data present on the
a0, x0, and y0 input busses. The set of input data is
shown in Figure 9 on page 12 as In0. Normally the next
ldData signal must come after the end of the current
CORDIC cycle; i.e., after the rdyOut signal appears on the
module output. In the case that the next ldData signal is
issued prior to the end of a current cycle, the CORDIC
engine starts a new computation cycle and discards the
incomplete results of the interrupted cycle. 

Once the CORDIC engine completes calculating the
result, it generates a rdyOut signal one clock period in
width. The result on the output busses (an, xn, and yn) is
valid while the rdyOut signal is active. The next ldData
signal can immediately follow the rdyOut signal.
Obviously a valid, fresh set of input data, shown as In1,
must be ready by then. 

One cycle of CORDIC computation = (iterations + 1) clock
cycles. 

Figure 8 • Bit-Serial Architecture Timing Diagram
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CoreCORDIC CORDIC RTL Generator
Signal clkEn can be manipulated as desired. While this signal is low, the CORDIC engine retains all the data it has
collected or processed so far. As an example, the word-serial CORDIC engine is used to fill up the LUT on a power-on
event. Once the CORDIC completes the task, a high-level state machine may disable the clkEn signal.

Parallel Architecture Interface and Timing
Figure 10 depicts a timing diagram for the parallel architecture. At the beginning of every clock cycle, a fresh set of
input arguments a0, x0, and y0 enters the CORDIC engine. No control signals accompany the input data. The CORDIC
engine puts out the results at the beginning of every clock cycle with the latency of iterations clock cycles. 

Signal rst synchronously resets the parallel architecture; i.e., resets all the registers of the parallel engine. 
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Figure 10 • Parallel Architecture Timing Diagram
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CoreCORDIC CORDIC RTL Generator
A Sample Configuration File
The following is an example of the configuration file:

Ordering Information
Order CoreCORDIC through your local Actel sales representative. Use the following numbering convention when
ordering: CoreCORDIC-XX, where XX is listed in Table 9. 

Datasheet Categories
In order to provide the latest information to designers, some datasheets are published before data has been fully
characterized. Datasheets are designated as "Product Brief," "Advanced," and "Production." The definitions of these
categories are as follows:

Product Brief
The product brief is a summarized version of an advanced or production datasheet containing general product
information. This brief summarizes specific device and family information for unreleased products.

Advanced
This datasheet version contains initial estimated information based on simulation, other products, devices, or speed
grades. This information can be used as estimates, but not for production.

Unmarked (production)
This datasheet version contains information that is considered to be final.

module_name Cordic_test

architecture 0

mode 0

bit_width 16

iterations 16

fpga_family pa3

lang verilog

Table 9 • Ordering Codes

XX Description

EV Evaluation version

AR RTL for unlimited use on Actel devices

UR RTL for unlimited use and not restricted to Actel devices
v2.0 13



CoreCORDIC CORDIC RTL Generator
Appendix I

Polar and Rectangular Coordinate Relations 

The Cartesian coordinates (X, Y) are defined in terms of the polar coordinates r (vector magnitude, or radial
coordinate) and θ (vector phase, or polar angle), as given in EQ 14 and EQ 15.

EQ 14

EQ 15

In terms of Cartesian coordinates, the polar coordinates are expressed as given in EQ 16 and EQ 17.

EQ 16

EQ 17

Figure 11 • Cartesian Coordinate Definition
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CoreCORDIC CORDIC RTL Generator
Appendix II 

Examples of CORDIC Modes

Polar to Cartesian Coordinate Conversion
The CORDIC engine is in rotation mode. Input data represent magnitude r and phase θ of the vector whose polar
coordinates are to be converted to Cartesian coordinates. The CORDIC engine puts out a pair of Cartesian coordinates
(X*K, Y*K) scaled by processing gain K (Figure 12).  

General Rotation
The CORDIC engine is in rotation mode. Input data (X0, Y0, Angle) represent initial vector Cartesian coordinates, as
well as an angle to rotate the vector. The CORDIC engine puts out a pair of Cartesian coordinates (X*K, Y*K) of the
resulting rotated vector scaled by processing gain K (Figure 13). 

Figure 12 • Polar to Cartesian Vector Conversion
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Figure 13 • CORDIC General Vector Rotation
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CoreCORDIC CORDIC RTL Generator
Sine and Cosine CORDIC Calculator 
The CORDIC engine is in rotation mode. Input data r = 1/K and phase θ represent initial vector polar coordinates. The
CORDIC engine puts out a pair of Cartesian coordinates equal to (cosθ, sinθ ), as shown in Figure 14. 

Cartesian to Polar Coordinate Conversion 
The CORDIC engine is in vectoring mode. Input data represent Cartesian coordinates (X0, Y0) of the input vector. The
CORDIC engine puts out a pair of polar coordinates: magnitude r*K and phase θ of the input vector (Figure 15).

Figure 14 • Sine and Cosine CORDIC Computation

Figure 15 • Cartesian to Polar Coordinate Conversion
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CoreCORDIC CORDIC RTL Generator
CORDIC Square Root Calculator 
The CORDIC engine is in vectoring mode. Input data represent Cartesian coordinates (X0, Y0) of the input vector. The

CORDIC engine puts out a pair of polar coordinates: magnitude  and phase θ of the input vector

(Figure 16).

CORDIC Arctan Calculator
The CORDIC engine is in vectoring mode. Input data represent Cartesian coordinates (X0, Y0) of the input vector. The
CORDIC engine puts out a pair of polar coordinates: magnitude r and phase θ = arctan(Y0 / X0) of the input vector.

Figure 16 • CORDIC Square Root Calculator
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Figure 17 • CORDIC Arctan Phase Calculator
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