SKiiP 03AC066V1

3-phase bridge inverter

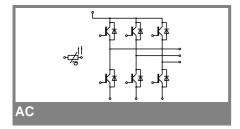
SKiiP 03AC066V1

Target Data

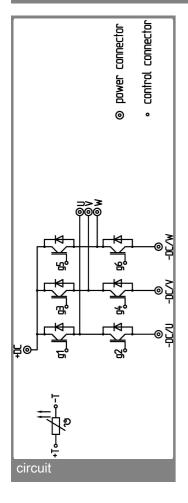
Features

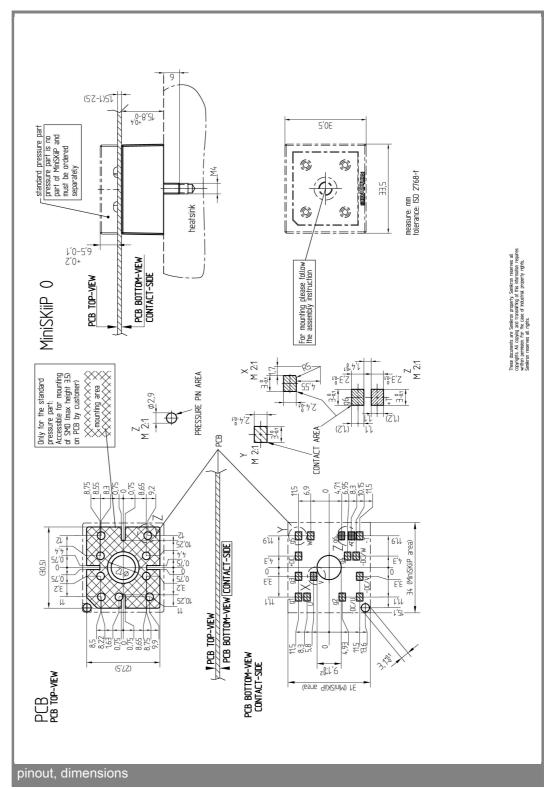
- Trench IGBTs
- · Robust and soft freewheeling diodes in CAL technology
- Highly reliable spring contacts for electrical connections
- UL recognised file no. E63532

Typical Applications


- Inverter up to 5,6 kVA
- Typical motor power 3,0 kW

Remarks


- Case temperature limited to T_C = 125°C max.
- Product reliability results are valid for $T_i = 150$ °C
- SC data: $t_p \le 6 \mu s$; $V_{GE} \le 15 V$; $T_j = 150^{\circ} C$; $V_{CC} = 360 V$ V_{CEsat} , $V_F = chip level value$


Absolute Maximum Ratings T _S = 25 °C, unless otherwise specific								
Symbol	Conditions	Values	Units					
IGBT - Inverter								
V_{CES}		600	V					
I _C	T _s = 25 (70) °C ,T _j = 150 °C	24 (17)	Α					
I _C	$T_s = 25 (70) ^{\circ}C, T_j = 150 ^{\circ}C$	27 (21)	Α					
I _{CRM}	t _p = 1 ms	30	Α					
V_{GES}		± 20	V					
T _j		-40+175	°C					
Diode - Inverter								
I _F	T _s = 25 (70) °C ,T _i = 150 °C	24 (16)	Α					
I _F	$T_s = 25 (70) ^{\circ}C , T_i = 175 ^{\circ}C$	28 (21)	Α					
I _{FRM}	$t_p = 1 \text{ ms}$	30	Α					
T _j		-40+175	°C					
I _{tRMS}	per power terminal (20 A / spring)	20	Α					
T _{stg}	$T_{op} \le T_{stg}$	-40+125	°C					
V _{isol}	AC, 1 min.	2500	V					

Characteristics		S = 25 °C, unless otherwise specified						
Symbol	Conditions	min.	typ.	max.	Units			
IGBT - Inverter								
$V_{CEsat} \ V_{GE(th)}$	I_{Cnom} = 15 A , T_j = 25 (150) °C V_{GE} = V_{CE} , I_C = 1 mA	1,1	1,45 (1,65) 5,8	1,85 (2,05)	V			
V _{CE(TO)}	T _i = 25 (150) °C		0,9 (0,85)	1 (0,9)	V			
r _T	T _i = 25 (150) °C		40 (56,7)	,	mΩ			
C _{ies}	$V_{CF} = 25 \text{ V}, V_{GF} = 0 \text{ V}, f = 1 \text{ MHz}$		0,86	` ,	nF			
C _{oes}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		0,18		nF			
C _{res}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		0,12		nF			
R _{CC'+EE'}	spring contact-chip T _s = 25 (150)°C				mΩ			
$R_{th(j-s)}$	per IGBT		1,8		K/W			
t _{d(on)}	under following conditions		20		ns			
t _r	$V_{CC} = 300 \text{ V}, V_{GE} = \pm 15 \text{V}$		30		ns			
t _{d(off)}	$I_{Cnom} = 15 \text{ A}, T_j = 150 \text{ °C}$		155		ns			
t _f	$R_{Gon} = R_{Goff} = 22 \Omega$		40		ns			
$E_{on}(E_{off})$	inductive load		0,6 (0,5)		mJ			
Diode - Inverter								
$V_F = V_{EC}$	$I_{Fnom} = 15 \text{ A}, T_{j} = 25 (150) ^{\circ}\text{C}$		1,4 (1,4)	1,7 (1,7)	V			
V _(TO)	$T_j = 25 (150) ^{\circ}C$		1 (0,9)	,	V			
r _T	T _j = 25 (150) °C		26,7 (33,3)	40 (46,7)	mΩ			
$R_{th(j-s)}$	per diode		2,5		K/W			
I _{RRM}	under following conditions		20		Α			
Q_{rr}	$I_{Fnom} = 15 \text{ A}, V_{R} = 300 \text{ V}$		1,8		μC			
E _{rr}	V _{GE} = 0 V, T _j = 150 °C		0,5		mJ			
	$di_F/dt = 930 A/\mu s$							
Temperat	Temperature Sensor							
R _{ts}	3 %, T _r = 25 (100) °C		1000(1670)		Ω			
Mechanical Data								
m			21,5		g			
M_s	Mounting torque	2		2,5	Nm			

SKiiP 03AC066V1

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.