Discrete Power & Signal Technologies ## TN6725A # **NPN Darlington Transistor** This device is designed for applications requiring extremely high current gain at collector currents to 1A. Sourced from Process 05. See MPSA14 for characteristics. ### **Absolute Maximum Ratings*** T_{A = 25°C unless otherwise noted} | Symbol | Parameter | Value | Units | |----------------------|--|-------------|-------| | V _{CES} | Collector-Emitter Voltage | 50 | V | | V _{CBO} | Collector-Base Voltage | 60 | V | | V _{EBO} | Emitter-Base Voltage | 12 | V | | Ic | Collector Current - Continuous | 1.2 | Α | | T _{J, Tstg} | Operating and Storage Junction Temperature Range | -55 to +150 | °C | ^{*}These ratings are limiting values above which the serviceability of any semiconductor device may be impaired. #### NOTES: 1) These ratings are based on a maximum junction temperature of 150°C. 2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations. ### Thermal Characteristics T_{A = 25°C unless otherwise noted} | Symbol | Characteristic | Max | Units | |-------------------|--|---------|------------| | | | TN6725A | | | P _D | Total Device Dissipation Derate above 25°C | 1
8 | W
mW/°C | | R _θ JC | Thermal Resistance, Junction to Case | 50 | °C/W | | R _θ JA | Thermal Resistance, Junction to Ambient | 125 | °C/W | # NPN Darlington Transistor (continued) ## **Electrical Characteristics** T_{A = 25°C} unless otherwise noted | Symbol | Parameter | Test Conditions | Min | Max | Units | |----------------------|--------------------------------------|--|--------------------------|------------|-------| | OFF CHA | RACTERISTICS | | | | | | BV _{CES} | Collector-Emitter Breakdown Voltage | I _C = 1 mA | 50 | | V | | BV _{CBO} | Collector-Base Breakdown Voltage | I _C = 100 μA | 60 | | V | | BV _{EBO} | Emitter-Base Breakdown Voltage | I _E = 10 μA | 12 | | V | | I _{CBO} | Collector Cutoff Current | V _{CB} = 40 V | | 100 | nA | | I _{EBO} | Emitter Cutoff Current | V _{EB} = 10 V | | 100 | nA | | ON CHA | RACTERISTICS* | | | | | | h _{FE} | DC Current Gain | I_{C} = 200 mA, V_{CE} = 5 V
I_{C} = 500 mA, V_{CE} = 5 V
I_{C} = 1A, V_{CE} = 5 V | 25,000
15,000
4000 | 40,000 | - | | V _{CE(sat)} | Collector-Emitter Saturation Voltage | I _C = 200 mA, I _B = 2 mA
I _C = 1 A, I _B = 2 mA | | 1.0
1.5 | V | | V _{BE(sat)} | Base-Emitter Saturation Voltage | I _C = 1 A, I _B = 2 mA | | 2 | V | | V _{BE(on)} | Base-Emitter On Voltage | I _C = 1 A, V _{CE} = 5.0 V | | 2 | V | | SMALL S | SIGNAL CHARACTERISTICS | | | | | | C _{cb} | Output Capacitance | V _{CB} = 10 V, I _E = 0, f = 1MHz | | 10 | pF | | h _{fe} | Small Signal Current Gain | I _C = 200 mA,V _{CE} = 5 V, f=100MHz | 1 | 10 | - | ^{*}Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 1.0%