
Product Description

Sirenza Microdevices' SNA-400 is a GaAs monolithic broadband amplifier (MMIC) in die form. This amplifier provides 13dB of gain when biased at 65mA and 5.0V.

External DC decoupling capacitors determine low frequency response. The use of an external resistor allows for bias flexibility and stability.

These unconditionally stable amplifiers are designed for use as general purpose 50 ohm gain blocks. Its small size (0.4mm x 0.4mm) and gold metallization make it an ideal choice for use in hybrid circuits.

The SNA-400 is available in gel pak at 100 devices per container. Also available in packaged form (SNA-476 and SNA-486).

SNA-400

DC-8 GHz, Cascadable GaAs MMIC Amplifier

Product Features

- Cascadable 50 Ohm Gain Block
- 13dB Gain, +17dBm P1dB
- 1.5:1 Input and Output VSWR
- Operates From Single Supply
- Chip Back Is Ground

Applications

- PA Driver Amplifier
- Cellular, PCS, GSM, UMTS
- IF Amplifier
- · Wireless Data, Satellite

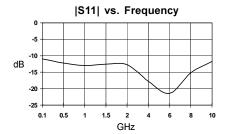
Symbol	Parameter	Frequency	Units	Min.	Тур.	Max.
P _{1dB}	Output Power at 1dB Compression	850 MHz 1950 MHz 2400 MHz	dBm dBm dBm		17.1 17.5 17.5	
OIP ₃	Output Third Order Intercept Point	850 MHz 1950 MHz 2400 MHz	dBm dBm dBm		32.3 30.9 30.6	
S ₂₁	Small Signal Gain	850 MHz 1950 MHz 2400 MHz	dB dB dB		13.9 13.6 13.5	
Bandwidth	(Determined by S ₁₁ , S ₂₂ Values)		MHz		6500	
VSWR _{IN}	Input VSWR	DC-6500 MHz	-		1.7:1	
VSWR _{OUT}	Output VSWR	DC-6500 MHz	-		1.6:1	
S ₁₂	Reverse Isolation	850 MHz 1950 MHz 2400 MHz	dB dB dB		18.3 18.2 18.2	
NF	Noise Figure	1950 MHz	dB		5.0	
V _D	Device Operating Voltage		V	4.5	5.0	5.5
I _D	Device Operating Current		mA	58	65	72
R _{TH} , j-b	Thermal Resistance (junction -backside)		° C/W	4 MIL 5	200	0. 10

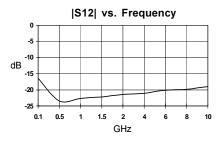
Test Conditions:

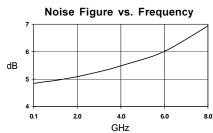
 $V_s = 8 V$

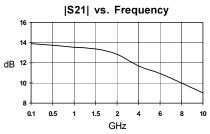
= 47 Ohms

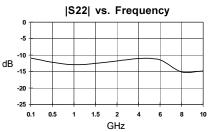
 $I_{D} = 65 \text{ mA Typ.}$ $T_{C} = 25^{\circ}\text{C}$

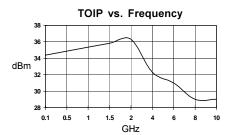

 OIP_3 Tone Spacing = 1 MHz, Pout per tone = 0 dBm $Z_s = Z_i = 50$ Ohms


The information provided herein is believed to be reliable at press time. Sirenza Microdevices assumes no responsibility for inaccuracies or omissions. Sirenza Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Sirenza Microdevices does not authorize or warrant any Sirenza Microdevices product for use in life-support devices and/or systems. Copyright 2001 Sirenza Microdevices, Inc.. All worldwide rights reserved.



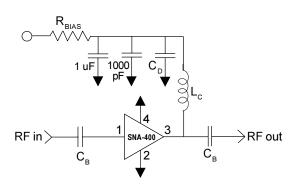

SNA-400 DC-8 GHz Cascadable MMIC Amplifier

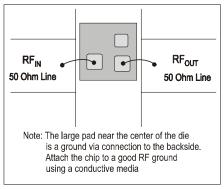

Typical Performance at 25° C (Vds = 5.0V, Ids = 65mA)



Absolute Maximum Ratings

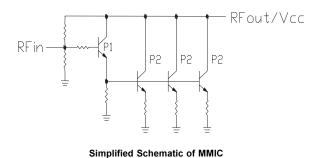
Parameter	Absolute Limit		
Max. Device Current (I _D)	130 mA		
Max. Device Voltage (V _D)	6 V		
Max. RF Input Power	+23 dBm		
Max. Junction Temp. (T _J)	+200°C		
Operating Temp. Range (T _L)	-40°C to +85°C		
Max. Storage Temp.	+150°C		


Operation of this device beyond any one of these limits may cause permanent damage. For reliable continous operation, the device voltage and current must not exceed the maximum operating values specified in the table on page one.


Bias Conditions should also satisfy the following expression: $I_nV_n < (T_i - T_i) / R_{Tu}$, j-I

SNA-400 DC-8 GHz Cascadable MMIC Amplifier

Typical Application Circuit



Suggested Bonding Arrangement (above configuration used for S-parameter data)

Application Circuit Element Values

Reference		Frequency (Mhz)					
Designator	500	850	1950	2400	3500		
C _B	220 pF	100 pF	68 pF	56 pF	39 pF		
C _D	100 pF	68 pF	22 pF	22 pF	15 pF		
L _c	68 nH	33 nH	22 nH	18 nH	15 nH		

Recommended Bias Resistor Values for I $_{\rm D}$ =65mA R $_{\rm BIAS}$ =(V $_{\rm S}$ -V $_{\rm D}$) / I $_{\rm D}$				
Supply Voltage(V _s)	8 V	9 V	10 V	12 V
R _{BIAS} 47 Ω 62 Ω 75 Ω 110 Ω				
Note: R _{BIAS} provides DC bias stability over temperature.				

For recommended handling, die attach, and bonding methods, see the following application note at www.sirenza.com.

AN-041 (PDF) Handling of Unpackaged Die

Part Number Ordering Information

Part Number	Gel Pack
SNA-400	100 pcs. per pack

Die are shipped per Sirenza application note AN-039 Visual Criteria For Unpackaged Die

522 Almanor Ave., Sunnyvale, CA 94085 Phone: (800) SMI-MMIC http://www.sirenza.com 3