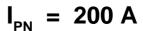
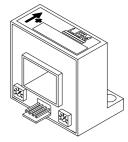
Current Transducer HAL 200-S

For the electronic measurement of DC, AC and pulsed currents, with a galvanic isolation between the primary (high power) circuit and the secondary (electronic) circuit.




Ele	ectrical data		
I PN	Primary nominal DC or rms current	200	A
	Primary current, measuring range	0 ± 600	A
P P	Overload capacity (Ampere Turns)	30000	A
V _{OUT}	Analogue output voltage @ ± I _{PN}	± 4	V
R	Load resistance $T_A = 0 + 70^{\circ}C$	> 1	kΩ
	T _A = - 25 + 85°C	> 3	kΩ
V _c	Supply voltage (± 5%)	± 15	V
l _c	Current consumption (max)	25	mA
/ _b	Rms rated voltage ¹⁾	500	V
V _d	Rms voltage for AC isolation test, 50 Hz, 1 mn	3	kV
R _{is}	Isolation resistance @ 500 V_{DC}	> 500	MΩ
Ac	curacy - Dynamic performance data		
X	Accuracy ²⁾ @ I_{PN} , $T_{A} = 25^{\circ}C$, @ ± 15 V	± 1	%
8 ,	Linearity ²⁾	± 0.5	%
-		Max	
V _{OE}	Electrical offset voltage @ $I_p = 0$, $T_A = 25^{\circ}C$	± 10	mV
V _{ом}	Residual offset voltage @ $I_p = 0$		
-	after an overload of $3 \times I_{PN}$	± 10	mV
/ _{от}	Thermal drift of offset voltage $T_A = -25 + 85^{\circ}C$	± 1	mV/°K
3 31	Thermal drift of gain $\mathbf{T}_{A} = -25 \dots + 85^{\circ}C$	± 0.05	%/°K
ţ	Response time @ 90 % of I _P	< 3	μs
di/dt	di/dt accurately followed	> 50	A/µs
f	Frequency bandwidth (- 3 dB) ³⁾	DC 50	kHz
Ge	eneral data		
T _A	Ambient operating temperature	- 25 + 8	s °C
T _s	Ambient storage temperature	- 25 + 8	5 °C
m	Mass	75	g
	Standards Safety	EN50178 (1994)	
	EMC	EN50082-2 (1992)	
		EN50081	-1 (1992)
	Deviation in output when tested to EN 61000-4-6	< 10	% of I _{PN}
	Deviation in output when tested to EN 61000-4-4	< 10	% of I _{PN}

Notes : ¹⁾ Reinforced insulation, Overvoltage Category II, Pollution Degree 2

²⁾ Excludes the electrical offset

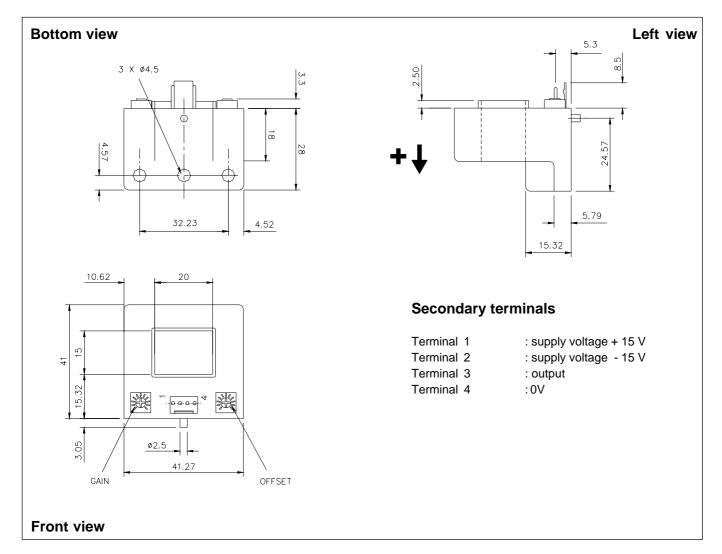
³⁾ Refer to derating curves in the technical file to avoid excessive core heating at high frequency

Features

- Open loop transducer using Hall Effect
- Panel mounting Horizontal or Vertical
- Insulated plastic case to UL 94-V0.

Advantages

- Very good linearity
- Very good accuracy
- Low temperature drift
- Wide frequency bandwidth
- Very low insertion losses
- High immunity to external interference
- Current overload capability
- Low power consumption
- Wide dynamic range, 50 to 600 A in one package.


Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptable Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

001114/2

Dimensions HAL 200-S (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Primary through-hole
- Connection of secondary
- ± 0.5 mm 20 mm x 15 mm
- Molex 5045-04-A

Remarks

- $\mathbf{V}_{_{OUT}}$ is positive when $\mathbf{I}_{_{\mathrm{P}}}$ flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 90°C.
- This is a standard model. For different versions (supply voltages, secondary connections, unidirectional measurements, operating temperatures, etc.) please contact us.