www.powerint.com

Design Idea DI-37 DPA-Switch[™] 16.5 W DC-DC Converter

Application	Device	Power Output	Input Voltage	Output Voltage	Topology
Telecom	DPA424R	16.5 W	36-75 VDC	3.3 V	Forward Sync. Rec.

Design Highlights

- Low cost
- 400 kHz synchronous rectification design
- Low component count
- Efficiency 87% at 48 VDC
- No current sense resistor or current transformer required
- Output overload, open loop and thermal protection
- Integrated UV meets ETSI standard

Operation

DPA-Switch greatly simplifies the design compared to a discrete implementation. Resistor R1 programs the under/over

voltages and linearly reduces the maximum duty cycle with input voltage to prevent core saturation during load transients. Resistor R3 programs the *DPA-Switch* current limit to 60% of nominal to limit fault and overload power. Drain voltage clamping is provided by Zener diode VR1. Transformer core reset is controlled by the gate capacitance of Q1.

Resistor R15 charges the gate of Q2, the forward synchronous rectifier MOSFET. The catch synchronous rectifier MOSFET (Q1) is directly driven by the transformer (T1) reset voltage and operates only when Q2 is off. Diode D2 provides a conduction path for the output inductor (L2) current when the transformer reset is complete.

PI-3650-072004

Key Design Points

- Transformer core reset is critical in this design. MOSFET gate loading will affect the transformer reset waveform. Capacitor C_{Q1gs} will load transformer reset. Choose Q1 MOSFET such that C_{Q1gs} provides sufficient reset at low line and safe maximum drain voltage at high line.
- Choose synchronous rectifier MOSFETs which have both low R_{DS(ON)} and also low Q_g (combination of gate charge Q_{as} and Miller capacitance Q_{ad}).

	TRANSFORMER PARAMETERS			
Core Material Bobbin		Epcos P/N: P 14 x 8 N87, ungapped		
		8-pin P 14 x 8 surface mount bobbin		
	Winding Details	Primary 10T + 10T, 1 x 26 AWG 3.3 V, 4 x 26 AWG		
Winding Order and Pin Numbers Primary Inductance Primary Resonant Frequency Leakage Inductance		Primary-1 (4-NC), 3.3 V (5-6), Primary-2 (NC-1)		
		600 μH ±25% at 400 kHz		
		3.8 MHz (minimum)		
		1 μH (maximum)		

- Reduce transformer leakage inductance by filling each winding layer across the entire width of the bobbin.
- Choose a low-drop Schottky diode (such as Vishay $SL44 V_f = 0.42 \text{ V}$), to increase high line efficiency.
- Choose a larger *DPA-Switch* to increase efficiency at low and medium input voltages.

INDUCTOR PARAMETERS				
Core Material	Epcos P/N: P 14 x 8 N87, gap for inductor			
Bobbin	8-pin P 14 x 8 surface mount bobbin			
Winding Details	Main 10T, 2 x 24 AWG Bias 30T, 1 x 32 AWG			
Winding Order and Pin Numbers	Main (7,8-5,6) Bias (1-2)			
Inductance	Pin (7,8-5,6): 16 μH ±10% at 400 kHz			

Table 2. Inductor Design Parameters.

 Table 1. Transformer Design Parameters.

For the latest updates, visit www.powerint.com

Power Integrations may make changes to its products at any time. Power Integrations has no liability arising from your use of any information, device or circuit described herein nor does it convey any license under its patent rights or the rights of others. POWER INTEGRATIONS MAKES NO WARRANTIES HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATIONS, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS. The products and applications illustrated herein (including circuits external to the products and transformer construction) may be covered by one or more U.S. and foreign patents or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at **www.powerint.com**.

The PI logo, **TOPSwitch**, **TinySwitch**, **LinkSwitch** and **EcoSmart** are registered trademarks of Power Integrations. **PI Expert** and **DPA-Switch** are trademarks of Power Integrations. ©Copyright 2004, Power Integrations

Power Integrations 5		Hellyer Avenue	San Jose, California 95138
MAIN PHONE NUMBER	APPLICATIONS HOTLINE	APPLICATIONS FAX	For a complete listing of worldwide sales offices, please visit www.powerint.com
+1 408-414-9200	+1 408-414-9660	+1 408-414-9760	

