

Product Description

The SGA-0363 is a high performance SiGe HBT MMIC Amplifier. A Darlington configuration featuring 1 micron emitters provides high F_T and excellent thermal perfomance. The heterojunction increases breakdown voltage and minimizes leakage current between junctions. Cancellation of emitter junction non-linearities results in higher suppression of intermodulation products. Only 2 DC-blocking capacitors, a bias resistor and an optional RF choke are required for operation.

The matte tin finish on Sirenza's lead-free package utilizes a post annealing process to mitigate tin whisker formation and is RoHS compliant per EU Directive 2002/95. This package is also manufactured with green molding compounds that contain no antimony trioxide nor halogenated fire retardants.

SGA-0363

SGA-0363Z

DC-5000 MHz, Silicon Germanium Cascadeable Gain Block

Product Features

- Now available in Lead Free, RoHS Compliant, & Green Packaging
- DC-5000 MHz Operation
- Single Voltage Supply
- Low Current Draw: 11mA at 2.5V typ.
- · High Output Intercept: 14 dBm typ. at 1950MHz

OIP₃ Tone Spacing = 1 MHz, Pout per tone = -12 dBm

Applications

- PA Driver Amplifier
- Cellular, PCS, GSM, UMTS
- IF Amplifier
- · Wireless Data, Satellite

 $Z_s = Z_i = 50 \text{ Ohms}$

Symbol	Parameter	Frequency	Units	Min.	Тур.	Max.
P _{1dB}	Output Power at 1dB Compression	850 MHz 1950 MHz 2400 MHz	dBm dBm dBm		2.3 2.3 1.6	
IP ₃ Third Order Intercept Point		850 MHz 1950 MHz 2400 MHz	dBm dBm dBm		14.2 14.0 13.1	
S ₂₁	Small Signal Gain	850 MHz 1950 MHz 2400 MHz	dB dB dB		19.6 17.2 16.2	
BW _{3dB}	3dB Bandwidth		MHz		5000	
VSWR _{IN}	Input VSWR	DC - 4500MHz	-		1.8:1	
VSWR _{OUT}	Output VSWR	DC - 4500MHz	-		1.7:1	
S ₁₂	Reverse Isolation	850 MHz 1950 MHz 2400 MHz	dB dB dB		24.0 22.8 22.1	
NF	Noise Figure	1950 MHz	dB		3.0	
V _D	Device Operating Voltage		V		2.5	
I _D	Device Operating Current		mA	9	11	13
R _{TH} , j-I	Thermal Resistance (junction - lead)		°C/W		255	

The information provided herein is believed to be reliable at press time. Sirenza Microdevices assumes no responsibility for inaccuracies or omissions. Sirenza Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Sirenza Microdevices does not authorize or warrant any Sirenza Microdevices product for use in life-support devices and/or systems. Copyright 2001 Sirenza Microdevices, Inc... All worldwide rights

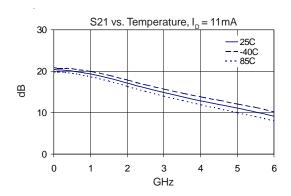
 $T_1 = 25^{\circ}C$

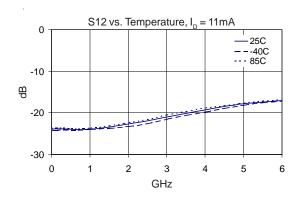
Test Conditions:

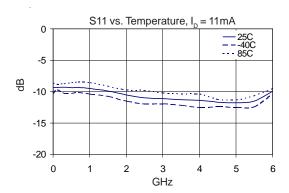
R_{BIAS} = 220 Ohms

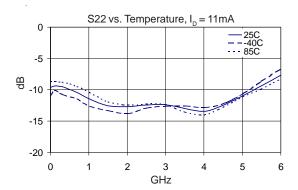
Key parameters, at typical operating frequencies:

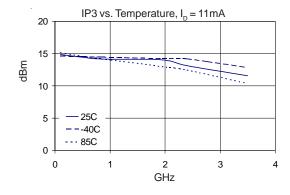
Test Condition
(I _D = 11mA, unless otherwise noted)
e spacing = 1 MHz, Pout per tone = -12dBm
3 ,,
50 Ohms
e spacing = 1 MHz, Pout per tone = -12dBm
50 Ohms
e spacing = 1 MHz, Pout per tone = -12dBm
50 Ohms
e spacing = 1 MHz, Pout per tone = -12dBm
50 Ohms
e spacing = 1 MHz, Pout per tone = -12dBm
•
e spacing = 1 MHz, Pout per tone = -12dBm
•

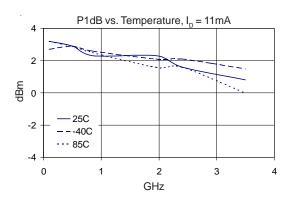

Absolute Maximum Ratings

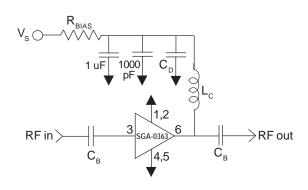

Parameter	Absolute Limit
Max. Device Current (I _D)	22 mA
Max. Device Voltage (V _D)	6 V
Max. RF Input Power	-5 dBm
Max. Junction Temp. (T _J)	+150°C
Operating Temp. Range (T _L)	-40°C to +85°C
Max. Storage Temp.	+150°C

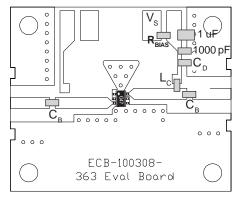

Operation of this device beyond any one of these limits may cause permanent damage. For reliable continous operation, the device voltage and current must not exceed the maximum operating values specified in the table on page one.

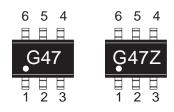

Bias conditions should also satisfy the following expression: $I_{_D}V_{_D}<(T_{_J}-T_{_L})\ /\ R_{_{TH'}}\ j\text{-}I$











Basic Application Circuit

Part Identification Marking

Caution: ESD sensitive Appropriate precautions in handling, packaging

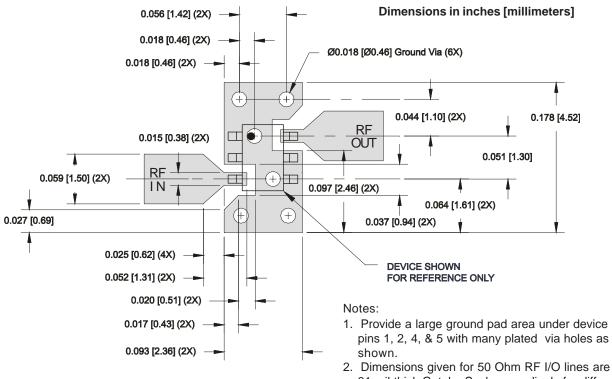
and testing devices must be observed.

Application Circuit Element Values

	Reference		Fr	equency (N	/lhz)	
	Designator	500	850	1950	2400	3500
Γ	СВ	220 pF	100 pF	68 pF	56 pF	39 pF
Γ	C _D	100 pF	68 pF	22 pF	22 pF	15 pF
	L _c	68 nH	33 nH	22 nH	18 nH	15 nH

Recommended Bias Resistor Values for I_D =11mA R_{BIAS} =(V_S - V_D) / I_D				
Supply Voltage(V _s)	5 V	7.5 V	9 V	12 V
R _{BIAS}	220Ω	470 Ω	620 Ω	910 Ω
Note: R provides DC bias stability over temperature				

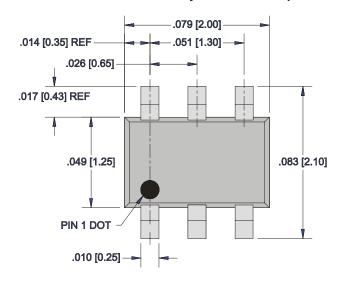
Mounting Instructions

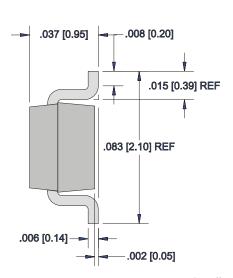

- 1. Use a large ground pad area near device pins 1, 2, 4, and 5 with many plated through-holes as shown.
- We recommend 1 or 2 ounce copper. Measurements for this data sheet were made on a 31 mil thick FR-4 board with 1 ounce copper on both sides.

Pin #	Function	Description
3	RF IN	RF input pin. This pin requires the use of an external DC blocking capacitor chosen for the frequency of operation.
1, 2, 4,	GND	Connection to ground. Use via holes for best performance to reduce lead inductance as close to ground leads as possible.
6	RF OUT/ BIAS	RF output and bias pin. DC voltage is present on this pin, therefore a DC blocking capacitor is necessary for proper operation.

Part Number	Reel Size	Devices/Reel
SGA-0363	7"	3000
SGA-0363Z	7"	3000

SOT-363 PCB Pad Layout




- Dimensions given for 50 Ohm RF I/O lines are for 31 mil thick Getek. Scale accordingly for different board thicknesses and dielectric contants.
- We recommend 1 or 2 ounce copper. Measurements for this data sheet were made on a 31 mil thick Getek with 1 ounce copper on both sides.

SOT-363 Nominal Package Dimensions

Dimensions in inches [millimeters]

A link to the SOT-363 package outline drawing with full dimensions and tolerances may be found on the product web page at www.sirenza.com.

