SPECIFICATION FOR APPROVAL | (|) Preliminary Specification | |-----|-----------------------------| | (🌢 |) Final Specification | | Title 15.0" XGA TFT LCD | | |-------------------------|--| |-------------------------|--| | BUYER | GateWay(Arima) | |-------|----------------| | MODEL | | | SUPPLIER | LG.Philips LCD CO., Ltd. | | | |----------|--------------------------|--|--| | *MODEL | LM150X05 | | | | SUFFIX | C3 | | | *When you obtain standard approval, please use the above model name without suffix | SIGNATURE | DATE | |--|------| Please return 1 copy for yo your signature and comme | | | APPROVED BY | DATE | | | | | |---|------|--|--|--|--| | Paul Lee / G.Manager | | | | | | | REVIEWED BY | | | | | | | S. G. Hong / Manager | | | | | | | PREPARED BY | | | | | | | J. Y. Lee / Engineer | | | | | | | Product Engineering Dept.
LG. Philips LCD Co., Ltd | | | | | | Ver. 1.1 Oct. 10, 2001 1/27 | NO. | ITEM | | | | |-----|--|----|--|--| | - | COVER | 1 | | | | - | CONTENTS | 2 | | | | - | RECORD OF REVISIONS | 3 | | | | 1 | GENERAL DESCRIPTION | 4 | | | | 2 | ABSOLUTE MAXIMUM RATINGS | 5 | | | | 3 | ELECTRICAL SPECIFICATIONS | 6 | | | | 3-1 | ELECTRICAL CHARACTREISTICS | 6 | | | | 3-2 | INTERFACE CONNECTIONS | 8 | | | | 3-3 | SIGNAL TIMING SPECIFICATIONS | 11 | | | | 3-4 | SIGNAL TIMING WAVEFORMS | 12 | | | | 3-5 | COLOR INPUT DATA REFERENECE | 13 | | | | 3-6 | POWER SEQUENCE | 14 | | | | 3-7 | POWER DIP CONDITION | 15 | | | | 4 | OPTICAL SPECIFICATIONS | 16 | | | | 5 | MECHANICAL CHARACTERISTICS | 20 | | | | 6 | RELIABILITY | 23 | | | | 7 | INTERNATIONAL STANDARDS | 24 | | | | 7-1 | SAFETY | 24 | | | | 7-2 | EMC | 24 | | | | 8 | PACKING | 25 | | | | 8-1 | DESIGNATION OF LOT MARK | 25 | | | | 8-2 | PACKING FORM | 25 | | | | 9 | PRECAUTIONS | 26 | | | | 9-1 | MOUNTING PRECAUTIONS | 26 | | | | 9-2 | OPERATING PRECAUTIONS | 26 | | | | 9-3 | ELECTROSTATIC DISCHARGE CONTROL | 27 | | | | 9-4 | PRECAUTIONS FOR STRONG LIGHT EXPOSURE | 27 | | | | 9-5 | STORAGE | 27 | | | | 9-6 | HANDLING PRECAUTIONS FOR PROTECTION FILM | 27 | | | # **RECORDS OF REVISIONS** | Revision No | Date | Page | DESCRIPTION | |-------------|---------------|------|--| | 0.0 | Apr. 27, 2001 | - | First Draft | | 1.0 | Jul. 31, 2001 | - | Second Draft (Fixed values) | | 1.1 | Oct. 10, 2001 | 22 | Backlight bar-cord added | | | | 27 | 9.6 Handling precautions revised | | | | | (The protection film is attached to the bezel) | ### 1. General Description The LM150X05-C3 is a Color Active Matrix Liquid Crystal Display with an integral Cold Cathode Fluorescent Lamp(CCFL) backlight system. The matrix employs a-Si Thin Film Transistor as the active element. It is a transmissive type display operating in the normally white mode. This TFT-LCD has a 15.0 inches diagonally measured active display area with XGA resolution(768 vertical by 1024 horizontal pixel array). Each pixel is divided into Red, Green and Blue sub-pixels or dots which are arranged in vertical stripes. Gray scale or the brightness of the sub-pixel color is determined with a 6-bit gray scale signal for each dot, thus, presenting a palette of more than 16M colors. The LM150X05-C3 has been designed to apply the LVDS(8-bit,1-port) interface method. The LM150X05-C3 LCD is intended to support applications where high brightness, wide viewing angle, high color saturation, and high color depth are very important. In combination with the vertical arrangement of the sub-pixels, the LM150X05-C3 characteristics provide an excellent flat panel display for office automation products such as monitors. [figure 1] Block diagram #### **General Features** | Active screen size | 15.0 inches(304.1 x 228.1) diagonal | | | | |------------------------|--|--|--|--| | Outline Dimension | 331.3(H) × 257.9(V) × 11.0(D) mm (Typ) | | | | | Pixel Pitch | 0.297 mm x 0.297mm | | | | | Pixel format | 1024 horiz. By 768 vert. Pixels RGB stripes arrangement | | | | | Color depth | 8-bit(With FRC), 16M colors | | | | | Luminance, white | 200 cd/m ² (Typ.) | | | | | Power Consumption | Total 9.2 Watt(Typ.) | | | | | Weight | 1030g (Typ) | | | | | Display operating mode | Transmissive mode, normally white | | | | | Surface treatments | Hard coating(3H) Anti-glare treatment of the front polarizer | | | | Ver. 1.1 Oct. 10, 2001 4/27 ### 2. Absolute Maximum Ratings The following are maximum values which, if exceeded, may cause operation or damage to the unit. **Table 1. ABSOLUTE MAXIMUM RATINGS** | Parameter | symbol | Va | lues | Units | Notes | | |----------------------------|-----------------|------|------|--------|-------------|--| | Farameter | Syllibol | Min. | Max. | Offics | Notes | | | Power Input Voltage | V_{CC} | -0.3 | 3.6 | Vdc | At 25 ± 2°C | | | Operating Temperature | T _{OP} | 0 | 50 | °C | | | | Storage Temperature | T _{ST} | -20 | 60 | °C | 1 | | | Operating Ambient Humidity | H _{OP} | 10 | 90 | %RH | 1 | | | Storage Humidity | H _{ST} | 10 | 90 | %RH | 1 | | Note: 1. Temperature and relative humidity range are shown in the [figure 2]. Wet bulb temperature should be 40 °C Max, and no condensation of water. [figure 2] Temperature and relative humidity Ver. 1.1 Oct. 10, 2001 5/27 Hrs 8 ### **Product Specification** ### 3. Electrical Specifications Life Time #### 3-1. Electrical Characteristics The LM150X05-C3 requires two power inputs. One is employed to power the LCD electronics and to drive the TFT array and liquid crystal. Another which powers the CCFL, is typically generated by an inverter. The inverter is an external unit to the LCD. **Values Parameter** Symbol Units Notes Min. Max. Typ. MODULE: Signal Input Voltage V_{I} 3.0 3.3 3.6 V 3.15 3.3 3.45 ٧ Power Supply Input Voltage V_{CC} Permissive power input ripple V_{RF} 0.1 V_{PP} 0.45 0.75 Α Power Supply Input Current 1 I_{CC} **Power Consumption** P_{CC} 1.5 2.7 Watts 2 Rush Current 1.0 2.0 Α I_{RUSH} LAMP: Operating Voltage 460 480 590 V_{BL} 3 V_{RMS} **Operating Current** 3.0 8.0 mΑ I_{BL} 9.0 V_{BS} Established Starting Voltage 4 at 25 °C 850 V_{RMS} at 0 °C 1100 V_{RMS} **Operating Frequency** kHz 5 $f_{\underline{BL}}$ 45 60 80 Minutes Discharge Stabilization Time 3 6 T_{S} 7 **Power Consumption** P_{BL} 7.68 8.44 Watts Table 2. ELECTRICAL CHARACTERISTICS Note. The design of the inverter must have specifications for the lamp in LCD Assembly. The performance of the Lamp in LCM, for example life time or brightness, is extremely influenced by the characteristics of the DC-AC Inverter. So all the parameters of an inverter should be carefully designed so as not to produce too much leakage current from high-voltage output of the inverter. When you design or order the inverter, please make sure unwanted lighting caused by the mismatch of the lamp and the inverter(no lighting,flicker,etc) never occurs. When you confirm it,the LCD Assembly should be operated in the same condition as installed in your instrument. **Note.** Do not attach a conducting tape to lamp connecting wire.. If the lamp wire attach to conducting tape, TFT-LCD Module have a low luminance and the inverter has abnormal action because leakage current occurs between lamp wire and conducting tape. 30,000 - 1. The specified current and power consumption are under the V_{CC} =3.3V, 25°C, f_V (frame frequency) =60Hz condition whereas mosaic(black & white) pattern shown in the [figure 3] is displayed. - 2. The duration of rush current is about 20ms. - 3. Oporating voltage is measured under 25 $^{\circ}$ C. The variance of the voltage is \pm 10%. - 4. The voltage above V_{BS} should be applied to the lamps for more than 1second for start-up. Otherwise,the lamps may not be turned on. Ver. 1.1 Oct. 10, 2001 6/27 - 5. The output of the inverter must have symmetrical(negative and positive) voltage waveform and symmetrical current waveform.(Unsymmetrical ratio is less than 10%) Please do not use the inverter which has unsymmetrical voltage and unsymmetrical current and spike wave. - Lamp frequency may produce interference with horizontal synchronous frequency and as a result this may cause beat on the display. Therefore lamp frequency shall be as away as possible from the horizontal synchronous frequency and from its harmonics in order to prevent interference. - 6. Let's define the brightness of the lamp after being lighted for 5 minutes as 100%. T_s is the time required for the brightness of the center of the lamp to be not less than 95%. - The used lamp current is the lamp typical current. 7. The lamp power consumption shown above does not include loss of external inverter under 25°C. - The used lamp current is the lamp typical current. 8. The life time is determined as the time at which brightness of lamp is 50% compared to that of initial - value at the typical lamp current on condition of continuous operating at 25 $\pm 2\,^{\circ}$ C. - Requirements for a system inverter design, which is intended to have a better display performance, a better power efficiency and a more reliable lamp. - It shall help increase the lamp lifetime and reduce its leakage current. - a. The unbalance rate of the inverter waveform should be 10% below; - b. The distortion rate of the waveform should be within $\sqrt{2 \pm 10\%}$; - c. The ideal sine wave form shall be symmetric in positive and negative polarities. - * Asymmetry rate = $|I_p I_{-p}| / I_{rms}$ * 100% - * Distortion rate = I_p (or I_{-p}) / I_{rms} - 10. Inverter open voltage must be more than lamp starting voltage. [figure 3] mosaic pattern for Power Consumption measurement #### 3-2. Interface Connections This LCM has three interface connections, a 20 pin connector is used for the module electronics and, two three pin connectors are used for the integral back light system. The interface pin configuration for the connector is shown in the table below. LCD Connector :DF19K-20P-1H(Hirose Electric Co.,Ltd.) Mating Connector : DF19G-20S-1C(Hirose Electric Co.,Ltd.) **Table 3. MODULE CONNECTOR PIN CONFIGURATION** | Pin | Symbol | Description | Notes | |---|---|---|--| | Pin 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | Symbol Vcc Vcc GND GND Rx0- Rx0+ GND Rx1- Rx1+ GND Rx2- Rx2+ GND RxC- RxC+ GND RxC- RxC+ GND Rx3- Rx3+ | 3.3V(typical) 3.3V(typical) 3.3V(typical) GND GND LVDS signal(-) LVDS signal(+) GND LVDS signal(-) LVDS signal(-) LVDS signal(-) LVDS signal(-) LVDS signal(-) LVDS signal(+) GND LVDS signal(-) LVDS signal(-) LVDS signal(-) LVDS signal(+) GND LVDS signal(-) LVDS signal(-) LVDS signal(-) LVDS signal(-) | Interface chips LCD: THC63LVDF84A System: DS90C385 or SN75LVDS83 or TH63LVDM83A *Pin to Pin compatible with TI and Thine *Pin assign is shown in the Table 4. Caution: NS LVDS Tx has unstable current by the change screen pattern. | | 19
20 | GND
NC | GND
No Connection | | Note 1. All GND(ground) pins should be connected together and to Vss which should also be connected to the LCD's metal frame. ^{2.} All Vcc(power input) pins should be connected together. Table 4. REQUIRED SIGNAL ASSIGNMENT FOR FlatLink Transmitter | Pin# | Pin Name | Require Signals | IN/OUT | Pin# | Pin Name | Require Signals | IN/OUT | |------|----------|-----------------|--------|------|----------|-----------------|--------| | 1 | VCC | Vcc | | 56 | TXIN4 | R6 | I | | 2 | TXIN5 | R1 | I | 55 | TXIN3 | T5 | ı | | 3 | TXIN6 | R7 | I | 54 | TXIN2 | T4 | I | | 4 | TXIN7 | G2 | I | 53 | GND | GND | | | 5 | GND | GND | | 52 | TXIN1 | R3 | ı | | 6 | TXIN8 | G3 | I | 51 | TXIN0 | R2 | 1 | | 7 | TXIN9 | G4 | I | 50 | TXIN27 | R0 | ı | | 8 | TXIN10 | G0 | I | 49 | LVDSGND | LVDSGND | | | 9 | VCC | Vcc | | 48 | TXOUT0- | TX0- | 0 | | 10 | TXIN11 | G1 | I | 47 | TXOUT0+ | TX0+ | 0 | | 11 | TXIN12 | G5 | I | 46 | TXOUT1- | TX1- | 0 | | 12 | TXIN13 | G6 | I | 45 | TXOUT1+ | TX1+ | 0 | | 13 | GND | GND | | 44 | LVDSVCC | LVDSVCC | | | 14 | TXIN14 | G7 | I | 43 | LVDSGND | LVDSGND | | | 15 | TXIN15 | B2 | I | 42 | TXOUT2- | TX2- | 0 | | 16 | TXIN16 | В0 | I | 41 | TXOUT2+ | TX2+ | 0 | | 17 | R_FB | R_FB | I | 40 | TXCOUT- | TXC- | 0 | | 18 | TXIN17 | B1 | I | 39 | TXCOUT+ | TXC+ | 0 | | 19 | TXIN18 | В3 | I | 38 | TXOUT3- | TX3- | 0 | | 20 | TXIN19 | B4 | I | 37 | TXOUT3+ | TX3+ | 0 | | 21 | GND | GND | | 36 | LVDSGND | LVDSGND | | | 22 | TXIN20 | B5 | I | 35 | PLLGND | PLLGND | | | 23 | TXIN21 | В6 | I | 34 | PLLVCC | PLLVCC | | | 24 | TXIN22 | B7 | l | 33 | PLLGND | PLLGND | | | 25 | TXIN23 | RES | I | 32 | PD | PD | I | | 26 | VCC | Vcc | | 31 | TXCIN | DCLK | I | | 27 | TXIN24 | Hsync | I | 30 | TXIN26 | DATA ENABLE | I | | 28 | TXIN25 | Vsync | I | 29 | GND | GND | | Notes 1. Refer to LVDS Transmitter Data Sheet for detail descriptions. ^{2. 7} means MSB and 0 means LSB at R,G,B pixel data [figure 4] Connector diagram The backlight interface connector is a model BHR-03VS-1, manufactured by JST. The mating connector part number is SM02(8.0)B-BHS-1-TB or equivalent. The pin configuration for the connector is shown in the table 5. **Table 5. BACKLIGHT CONNECTOR PIN CONFIGURATION** | Pin | Symbol | Description | Notes | |-----|--------|--|-------| | 1 | HV | Power supply for lamp
(High voltage side) | 1 | | 2 | NC | No Connect | | | 3 | LV | Power supply for lamp
(Low voltage side) | | Notes: 1. The high voltage side terminal is colored pink. [figure 5] Backlight connector view # 3-3. Signal Timing Specifications This is the signal timing required at the input of the LVDS Transmitter. All of the interface signal timing should be satisfied with the following specifications for it's proper operation. Table 6. Timing Table | | Parameter | Symbol | Min. | Тур. | Max. | Unit | Notes | |---------|------------------------|------------------|-------|------|-----------------------------------|-----------------|---| | Delk | Period | t_{CLK} | 14.29 | 15.4 | 20 | ns | | | | Frequency | f_{CLK} | 50 | 65 | 70 | MHz | | | Hsync | Period | t _{HP} | 1208 | 1344 | 1360 | ${ m t_{CLK}}$ | | | | Width | t_{WH} | 16 | 136 | 240 | CLK | | | | Period | t_{VP} | 780 | 806 | 830 | t _{HP} | | | Vsync | Frequency | f_V | 50 | 60 | 75 | Hz | | | | Width | t_{WV} | 2 | 6 | 24 | t _{HP} | | | | Horizontal Valid | t_{HV} | 1024 | 1024 | 1024 | | | | | Horizontal Back Porch | t_{HBP} | 16 | 24 | - | ${\rm t_{CLK}}$ | | | | Horizontal Front Porch | t _{HFP} | 24 | 160 | - | CLK | | | | Horizontal Blank | - | 56 | 320 | t _{HP} - t _{HV} | | $t_{WH} + t_{HBP} + t_{HFP}$ | | DE | Vertical Valid | t_{VV} | 768 | 768 | 768 | | | | (Data | Vertical Back Porch | t_{VBP} | 2 | 29 | - | t _{HP} | | | Enable) | Vertical Front Porch | t_{VFP} | 1 | 3 | - | нР | | | | Vertical Blank | - | 5 | 38 | t _{VP} - t _{VV} | | $t_{\mathrm{WV}} + t_{\mathrm{VBP}} + t_{\mathrm{VFP}}$ | | | Set up time | t_{SI} | 3 | - | - | | | | | Hold time | $t_{\rm HI}$ | 3 | - | - | ns | For Delk | | Data | Set up time | t _{SD} | 3 | - | - | | 2 | | _ 3444 | Hold time | t _{HD} | 3 | - | - | | | Notes: 1. Do not change the period of Hsync during Vertical Back Porch and Valid, because LCM inner control signals are made by the Hsync. Ver. 1.1 Oct. 10, 2001 11/27 # 3-4. Signal Timing Waveforms [figure 6] Signal Timing Waveforms Ver. 1.1 Oct. 10, 2001 12/27 ### 3-5. Color Input Data Reference The brightness of each primary color(red,green and blue) is based on the 8-bit gray scale data input for the color; the higher the binary input, the brighter the color. The table below provides a reference for color versus data input. Table 7. COLOR DATA REFERENCE | | | | | | | | | | | | l | Inp | ut (| Cole | or E | ata | 1 | | | | | | | | | |-----------------|---|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|----------------------------|----------------------------|--------------------------------------|---------------------------------|----------------------------|----------------------------|----------------------------|---------------------------------| | | Color | | _ | | R | ed | | | 1 | | | | G | iree | en | | | | _ | | | ВІ | ue | | | | | | MS | B | | ı | | | ᆣ | SB | IV | ISB | | | | | L | SB | MS | SB | | | | _ | L | SB | | | | R7 | R6 | R5 | R4 | R3 | R2 | R1 | R0 | G7 | G6 | G5 | G4 | G3 | G2 | G1 | G0 | В7 | В6 | B5 | В4 | В3 | В2 | В1 | В0 | | Basic
Colors | Black Red(255) Green(255) Blue(255) Cyan Magenta Yellow White | 0
1
0
0
0
1
1 0
0
1
0
1
0
1 0
0
1
1
1
0 | 0
0
1
1
1
0 | 0
0
0
1
1
1
0
1 | 0
0
1
1
1
0
1 | 0
0
1
1
1
0 | 0
0
1
1
1
0 | 0
0
1
1
1
0 | 0
0
0
1
1
1
0 | | Red | Red(000) Dark
Red(001)
Red(002)
:
Red(253)
Red(254)
Red(255) Bright | 0
0
0
:
1
1 | 0
0
0
:
1
1 | 0
0
0
:
1
1 | 0
0
0
:
1
1 | 0
0
0
:
1
1 | 0
0
0
:
1
1 | 0
0
1
:
0
1 | 0
1
0
:
1
0 | 0 0 0 : 0 0 | 0 0 0 : 0 0 | 0 0 0 0 | 0
0
0
:
0
0 | 0
0
0
:
0
0 | 0
0
0
:
0
0 | 0 0 0 : 0 0 | 0 0 0 0 0 | 0
0
0
:
0
0 | Green | Green(000)Dark Green(001) Green(002) : Green(253) Green(254) Green(255)Bright | 0
0
0
:
0
0 0 0 0 : 0 0 | 0
0
0
:
1
1 | 0
0
0
:
1
1 | 0
0
0
:
1
1 | 0
0
0
:
1
1 | 0
0
0
:
1
1 | 0
0
0
:
1
1 | 0
0
1
:
0
1 | 0
1
0
:
1
0 | 0
0
0
:
0
0 | Blue | Blue(000) Dark Blue(001) Blue(002) : Blue(253) Blue(254) Blue(255) Bright | 0
0
0
:
0
0 0 0 0 : 0 0 | 0
0
0
:
0
0 | 0 0 0 : 0 0 0 | 0
0
0
:
0
0 | 0
0
0
:
0
0 | 0
0
0
:
0
0 | 0
0
0
:
0
0 | 0 0 0 : 0 0 | 0 0 0 : 0 0 | 0
0
0
:
1
1 | 0
0
0
:
1
1 | 0
0
0
:
1
1 | 0
0
0
:
1
1 | 0
0
0
:
1
1 | 0
0
0
:
1
1 | 0
0
1
:
0
1 | 0
1
0
:
1
0 | ### 3-6. Power Sequence [figure 7] Power Sequence Table 8. POWER SEQUENCE TIME DELAY | D | | Values | | | | | | | | | |----------------|------|--------|------|-------|--|--|--|--|--|--| | Parameter | Min. | Тур. | Max. | Units | | | | | | | | T ₁ | - | - | 10 | ms | | | | | | | | T_2 | 0 | - | 50 | ms | | | | | | | | T_3^- | 200 | - | - | ms | | | | | | | | T_4 | 200 | - | - | ms | | | | | | | | T ₅ | 0 | - | 50 | ms | | | | | | | | T_6 | - | - | 10 | ms | | | | | | | | T_7^{r} | 500 | - | - | ms | | | | | | | Notes: 1. Please avoid floating state of interface signal at invalid period. - 2. When the interface signal is invalid, be sure to pull down the power supply for LCD $\rm V_{CC}$ to 0V. - 3. Lamp power must be turn on after power supply for LCD and interface signal are valid. Ver. 1.1 Oct. 10, 2001 14/27 # 3-7. V_{CC} Power Dip Condition [figure 8] Power Dip condition 1) Dip condition $$2.3V \le V_{CC} < 3.0V$$, $t_d \le 20ms$ 2) $$V_{CC}$$ < 2.3V $\ensuremath{\text{V}_{\text{CC}}}\xspace\text{-dip}$ conditions should also follow the Power On/Off conditions for supply voltage. Ver. 1.1 Oct. 10, 2001 15/27 ### 4. Optical Specification Optical characteristics are determined after the unit has been 'ON' and stable for approximately 30 minutes in a dark environment at 25 °C. The values specified are at an approximate distance 50cm from the LCD surface at a viewing angle of Φ and θ equal to 0 °. [Figure 9] presents additional information concerning the measurement equipment and method. [Figure 9] Optical Characteristic Measurement Equipment and Method $\label{eq:table 9. OPTICAL CHARACTERISTICS} (Ta=25~^{\circ}\text{C}, \text{V}_{\text{CC}}=3.3\text{V}, \text{f}_{\text{V}}=60\text{Hz} \\ \text{Dclk}=65\text{MHz}, \text{I}_{\text{BL}}=8\text{mA})$ | Dovemeter | Cymah al | | Values | | Unito | Netes | |--|--|--|--|--|-------------------|-------| | Parameter | Symbol | Min. | Тур. | Max. | Units | Notes | | Contrast Ratio | CR | 200 | 300 | - | | 1 | | Surface Luminance, white | L_WH | 170 | 200 | - | cd/m ² | 2 | | Luminance Variation | $\delta_{ \text{WHITE}}$ | - | - | 1.3 | | 3 | | Response Time
Rise Time
Decay Time | Tr
Tr _R
Tr _D | -
- | 30
10
20 | 50
15
35 | ms | 4 | | CIE Color Coordinates
Red
Green
Blue
White | XR
YR
XG
YG
XB
YB
XW
YW | 0.596
0.317
0.278
0.558
0.116
0.089
0.283
0.299 | 0.626
0.347
0.308
0.588
0.146
0.119
0.313
0.329 | 0.656
0.377
0.338
0.618
0.176
0.149
0.343
0.359 | | | | Viewing Angle
x axis, right(φ=0°)
x axis, left (φ=180°)
y axis, up (φ=90°)
y axis, down (φ=270°) | θr
θl
θu
θd | 55
55
40
40 | 60
60
45
45 | -
-
-
- | degree | 5 | | Gray Scale | | - | 2.2 | - | | 6 | | Flicker | | - | - | -20 | dB | 7 | Ver. 1.1 Oct. 10, 2001 16/27 Notes: 1. Contrast Ratio(CR) is defined mathematically as: Surface Luminance with all white pixels Contrast Ratio = Surface Luminance with all black pixels 2. Surface luminance is the center point across the LCD surface 50cm from the surface with all pixels displaying white. For more information see [Figure 10]. When $I_{BL}=8mA$, $L_{WH}=170cd/m^2(Min.)\ 200cd/m^2(Typ.)$ 3. The variation in surface luminance , δ WHITE is determined by measuring L_{ON} at each test position 1 through 5, and then dividing the maximum L_{ON} of 5 points luminance by minimum L_{ON} of 5 points luminance. For more information see [Figure 10]. $\delta \, \text{WHITE} = \text{Maximum}(\text{L}_{\text{ON1}}, \text{L}_{\text{ON2}}, \, \ldots , \, \text{L}_{\text{ON5}}) \div \text{Minimum}(\text{L}_{\text{ON1}}, \text{L}_{\text{ON2}}, \, \ldots , \, \text{L}_{\text{ON5}})$ - 4. Response time is the time required for the display to transition from to black(Rise Time, Tr_R) and from black to white(Decay Time, Tr_D). For additional information see [Figure 11]. - 5. Viewing angle is the angle at which the contrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. For more information see [Figure 12]. - 6. Gray scale specification Table 10. GRAY SCALE | Gray Level | Luminance(%)
(Typ.) | |------------|------------------------| | L000 | 0.22 | | L031 | 0.81 | | L063 | 4.29 | | L095 | 11.4 | | L127 | 22.1 | | L159 | 36.4 | | L191 | 55.4 | | L223 | 78.0 | | L255 | 100 | 7. Flicker is measured at cyan dot pattern of Forground RGB(0,0,0) and Background RGB(0,127,127). #### [Figure 10] Luminance measuring point <measuring point for luminance variation> <measuring point for surface luminance> H: 304.1 mm V: 228.1 mm @ H,V: Active Area ### [Figure 11] Response Time The response time is defined as the following figure and shall be measured by switching the input signal for "black" and "white". ### [Figure 12] Viewing angle <dimension of viewing angle range> ### 5. Mechanical Characteristics The contents provide general mechanical characteristics for the model LM150X05-C3. In addition, the figures in the next page are detailed mechanical drawing of the LCD. **Table 11. MECHANICAL CHARACTERISTICS** | | Horizontal | 331.3±0.5 m | | | | | |---------------------|--|----------------|--|--|--|--| | Outside dimensions | Vertical | 257.9 ± 0.5 mm | | | | | | | Depth | 11.0 ± 0.5 mm | | | | | | Bezel area | Horizontal | 308.2±0.5 mm | | | | | | Dezei area | Vertical | 232.2±0.5 mm | | | | | | Active display area | Horizontal | 304.128 mm | | | | | | Active display area | Vertical | 228.096 mm | | | | | | Weight | 1030g(Typ.) | | | | | | | Surface Treatment | Hard coating 3H. Anti-glare,
LR coating treatment of the front polarizer. | | | | | | # [Figure 13] LM150X05 Front View [Figure 14] LM150X05 Rear View ### 6. Reliability **Table 12. ENVIRONMENT TEST CONDITION** | No. | Test Item | Conditions | | | | | | |-----|-----------------------------------|---|--|--|--|--|--| | 1 | High temperature storage test | Ta= 60°C 240h | | | | | | | 2 | Low temperature storage test | Ta= -20°C 240h | | | | | | | 3 | High temperature operation test | Ta= 50°C 50%RH 240h | | | | | | | 4 | Low temperature operation test | Ta= 0°C 240h | | | | | | | 5 | Humidity Condition operation | 10%RH ~ 90%RH | | | | | | | 6 | Humidity Condition storage | 10%RH ~ 90%RH | | | | | | | 7 | Vibration test
(non-operating) | Wave form : random Vibration level : 1.0G RMS Bandwidth : 10-500Hz Duration : X,Y,Z, 20 min One time each direction | | | | | | | 8 | Shock test
(non-operating) | Shock level: 120G Waveform: half sine wave, 2ms Direction: ± X, ± Y, ± Z One time each direction | | | | | | | 9 | Altitude
storage / shipment | 0 - 40,000 feet(12,192m) | | | | | | ### { Result Evaluation Criteria } There should be no change which might affect the practical display function when the display quality test is conducted under normal operating condition. #### 7. International Standards #### 7-1. Safety - a) UL 1950 Third Edition, Underwriters Laboratories, Inc. Jan. 28, 1995. Standard for Safety of Information Technology Equipment Including Electrical Business Equipment. - b) CAN/CSA C22.2 No. 950-95 Third Edition, Canadian Standards Association, Jan. 28, 1995. Standard for Safety of Information Technology Equipment Including Electrical Business Equipment. - c) EN 60950 : 1992+A1: 1993+A2: 1993+A3: 1995+A4: 1997+A11: 1997 IEC 950 : 1991+A1: 1992+A2: 1993+A3: 1995+A4: 1996 European Committee for Electrotechnical Standardization(CENELEC) EUROPEAN STANDARD for Safety of Information Technology Equipment Including Electrical Business Equipment. #### 7-2. EMC - a) ANSI C63.4 "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electrical Equipment in the Range of 9kHZ to 40GHz. "American National Standards Institute(ANSI), 1992 - b) C.I.S.P.R "Limits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment." International Special Committee on Radio Interference - c) EN 55022 "Limits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment." European Committee for Electrotechnical Standardization (CENELEC), 1998 ### 8. Packing ### 8-1. Designation of Lot Mark ### a) Lot Mark | АВ | CD | E F | G H | l J | K | М | |----|----|-----|-----|-----|---|---| |----|----|-----|-----|-----|---|---| A,B,C : SIZE D : YEAR E : MONTH F,G: PANEL CODE H: ASSEMBLY CODE I,J,K,L,M: SERIAL NO. #### Note: #### 1. YEAR | YEAR | 97 | 98 | 99 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | |------|----|----|----|------|------|------|------|------|------|------|------| | Mark | 7 | 8 | 9 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | #### 2. MONTH | MONTH | Jan. | Feb. | Mar. | Apr. | May. | Jun. | Jul. | Aug. | Sep. | Oct. | Nov. | Dec. | |-------|------|------|------|------|------|------|------|------|------|------|------|------| | Mark | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | Α | В | С | #### 3. Serial No. | Serial No. | 1 ~ 99999 | 100000 ~ | |------------|---------------|-----------------------------| | Mark | 00001 ~ 99999 | A0001 ~ A9999,······, Z9999 | #### b) Location of Lot Mark Serial NO. is printed on the label. The label is attached to the backside of the LCD module. This is subject to change without prior notice. ### 8-2. Packing Form a) Package quantity in one box: 8 pcs b) Box Size: 344mm X 315mm X 410mm. #### 9. PRECAUTIONS Please pay attention to the following when you use this TFT LCD module. #### 9-1. MOUNTING PRECAUTIONS - (1) You must mount a module using holes arranged in four corners or four sides. - (2) You should consider the mounting structure so that uneven force(ex. Twisted stress) is not applied to the module. - And the case on which a module is mounted should have sufficient strength so that external force is not transmitted directly to the module. - (3) Please attach a transparent protective plate to the surface in order to protect the polarizer. Transparent protective plate should have sufficient strength in order to the resist external force. - (4) You should adopt radiation structure to satisfy the temperature specification. - (5) Acetic acid type and chlorine type materials for the cover case are not describe because the former generates corrosive gas of attacking the polarizer at high temperature and the latter causes circuit break by electro-chemical reaction. - (6) Do not touch, push or rub the exposed polarizers with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of polarizer for bare hand or greasy cloth.(Some cosmetics are determined to the polarizer.) - (7) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach front / rear polarizers. Do not use acetone, toluene and alcohol because they cause chemical damage to the polarizer. - (8) Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading. - (9) Do not open the case because inside circuits do not have sufficient strength. #### 9-2. OPERATING PRECAUTIONS - (1) The spike noise causes the mis-operation of circuits. It should be lower than following voltage : V=±200mV(Over and under shoot voltage) - (2) Response time depends on the temperature.(In lower temperature, it becomes longer.) - (3) Brightness depends on the temperature. (In lower temperature, it becomes lower.) And in lower temperature, response time(required time that brightness is stable after turned on) becomes longer. - (4) Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur. - (5) When fixed patterns are displayed for a long time, remnant image is likely to occur. - (6) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimized the interference. Ver. 1.1 Oct. 10, 2001 26/27 #### 9-3. ELECTROSTATIC DISCHARGE CONTROL Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wrist band etc. And don't touch interface pin directly. #### 9-4. PRECAUTIONS FOR STRONG LIGHT EXPOSURE Strong light exposure causes degradation of polarizer and color filter. #### 9-5. STORAGE When storing modules as spares for a long time, the following precautions are necessary. - (1) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5°C and 35°C at normal humidity. - (2) The polarizer surface should not come in contact with any other object. It is recommended that they be stored in the container in which they were shipped. #### 9-6. HANDLING PRECAUTIONS FOR PROTECTION FILM - (1) The protection film is attached to the bezel with a small masking tape. When the protection film is peeled off, static electricity is generated between the film and polarizer. This should be peeled off slowly and carefully by people who are electrically grounded and with well ion-blown equipment or in such a condition, etc. - (2) When the module with protection film attached is stored for a long time, sometimes there remains a very small amount of glue still on the Bezel after the protection film is peeled off. - (3) You can remove the glue easily. When the glue remains on the Bezel or its vestige is recognized, please wipe them off with absorbent cotton waste or other soft material like chamois soaked with normal-hexane.