
S/UNI-APEX (PM7326) Driver Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-991727, Issue 1

PM7326

S/UNI-APEX
ATM/PACKET TRAFFIC MANAGER AND SWITCH

DRIVER MANUAL

DOCUMENT ISSUE 2
ISSUED MAY 2000



S/UNI-APEX (PM7326) Driver Manual
Introduction to This Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 2
Document ID: PMC-991727, Issue 1

INTRODUCTION TO THIS MANUAL

This manual describes the S/UNI-APEX device driver. It describes the driver’s functions,
data structures, and architecture. This manual focuses on the driver’s interfaces to your
application, real-time operating system, and to the S/UNI-APEX device. It also describes
in general terms how to modify and port the driver to your software and hardware
platform.

Audience

This manual will help people who need to:

• Evaluate and test the S/UNI-APEX device

• Modify and add to the S/UNI-APEX driver’s functions

• Port the S/UNI-APEX driver to a particular platform.

References

For more information about the S/UNI-APEX driver, see the driver release notes. For
more information about the S/UNI-APEX device, see the documents listed in Table 1.

Table 1: Related Documents

Device Document Name Document Number

ATM/Packet Traffic Manager and Switch Data Sheet PMC-981224

S/UNI-APEX Device Errata PMC-990882

PM7326

S/UNI-APEX ATM/PACKET Traffic Manager and
Switch Short Form Data Sheet

PMC-990146

Note: Ensure that you use the document that PMC-Sierra issued for your version of the
device.



S/UNI-APEX (PM7326) Driver Manual
Introduction to This Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 3
Document ID: PMC-991727, Issue 1

REVISION HISTORY

Issue No. Issue Date Details of Change

Issue 1 December 1999 Document created

Issue 2 April 2000 Added API functions to update congestion thresholds and
scheduling parameters for direction, port, class and
connection.

Added API functions to install and reset multicasting
callback function

Added multicasting callback function to section on
application callbacks

Modified section on SAR Assist to include support for
multicasting.

Legal Issues

None of the information contained in this document constitutes an express or implied
warranty by PMC-Sierra, Inc. as to the sufficiency, fitness or suitability for a particular
purpose of any such information or the fitness, or suitability for a particular purpose,
merchantability, performance, compatibility with other parts or systems, of any of the
products of PMC-Sierra, Inc., or any portion thereof, referred to in this document.
PMC-Sierra, Inc. expressly disclaims all representations and warranties of any kind
regarding the contents or use of the information, including, but not limited to, express and
implied warranties of accuracy, completeness, merchantability, fitness for a particular
use, or non-infringement.

In no event will PMC-Sierra, Inc. be liable for any direct, indirect, special, incidental or
consequential damages, including, but not limited to, lost profits, lost business or lost
data resulting from any use of or reliance upon the information, whether or not
PMC-Sierra, Inc. has been advised of the possibility of such damage.

The information is proprietary and confidential to PMC-Sierra, Inc., and for its
customers’ internal use. In any event, you cannot reproduce any part of this document, in
any form, without the express written consent of PMC-Sierra, Inc.

© 2000 PMC-Sierra, Inc.

PMC-991727 (P1), ref PMC-990236 (P2)

PMC-Sierra, Inc. has patents pending on the following S/UNI-APEX device and driver
technologies:

• Loop port scheduler



S/UNI-APEX (PM7326) Driver Manual
Introduction to This Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 4
Document ID: PMC-991727, Issue 1

• HSS protocol

• DSLAM architecture

Contacting PMC-Sierra

PMC-Sierra, Inc.
105-8555 Baxter Place Burnaby, BC
Canada V5A 4V7

Tel: (604) 415-6000
Fax: (604) 415-6200

Document Information: document@pmc-sierra.com
Corporate Information: info@pmc-sierra.com
Technical Support: apps@pmc-sierra.com
Web Site: http: //www.pmc-sierra.com

mailto:document@pmc-sierra.com
mailto:apps@pmc-sierra.com


S/UNI-APEX (PM7326) Driver Manual
Table of Contents

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 5
Document ID: PMC-991727, Issue 1

TABLE OF CONTENTS

Introduction to This Manual .................................................................................................2

Audience .......................................................................................................................2

References....................................................................................................................2

Legal Issues..................................................................................................................3

Contacting PMC-Sierra .................................................................................................4

Table of Contents.................................................................................................................5

Figures...............................................................................................................................12

Tables ................................................................................................................................13

1 Driver Porting Quick Start ...........................................................................................15

2 Driver Functions and Architecture...............................................................................16

2.1 Driver Functions ................................................................................................16

2.2 Driver Interfaces................................................................................................16
Application Programming Interface ............................................................17
Real-Time OS Interface..............................................................................18
Hardware Interface .....................................................................................18

2.3 Main Driver Components ..................................................................................18
Global Driver Database ..............................................................................19
Interrupt Service and Deferred Processing Routines.................................20
Driver Library ..............................................................................................20
Queue Engine.............................................................................................20
WAN Port Scheduler...................................................................................21
Loop Port Scheduler...................................................................................21
Segmentation and Re-assembly Assist Component ..................................21
Input/Output Component ............................................................................21
Statistics Component ..................................................................................22

2.4 Software States .................................................................................................22

2.5 Process Flows...................................................................................................23
Driver Initialization and Shutdown ..............................................................24
Device Addition, Initialization, and Deletion................................................25

3 Interrupt Servicing.......................................................................................................26

3.1 High-Priority Interrupt Servicing ........................................................................27

3.2 Low-Priority Interrupt Servicing.........................................................................27



S/UNI-APEX (PM7326) Driver Manual
Table of Contents

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 6
Document ID: PMC-991727, Issue 1

3.3 Installation and Removal of Interrupt Handlers.................................................28

4 Queue Engine .............................................................................................................29

4.1 Queue-Engine Data Structures .........................................................................29

4.2 Port-Class and ICI Tables .................................................................................29

4.3 Queue Control Block .........................................................................................31

5 Loop Port Scheduler ...................................................................................................32

5.1 Assigning Sequence Numbers..........................................................................32

5.2 LPS Data Structures..........................................................................................33

5.3 Poll Sequence Database...................................................................................34

5.4 Port Sequence Table.........................................................................................36

5.5 Assigning Port Sequence Numbers ..................................................................36

5.6 Updating Port Sequence Numbers ...................................................................37

6 SAR Assist ..................................................................................................................38

7 Data Structures ...........................................................................................................41

7.1 Global Driver Database.....................................................................................41

7.2 Device Data Blocks ...........................................................................................42

7.3 Configuration Vectors........................................................................................44
Module Initialization Vector Structure: sAPX_MIV......................................44
Device Initialization Vector Structure: sAPX_INIT_VECT ..........................44
Port Vector Structure: sAPX_PORT_VECT................................................46
Class Vector Structure: sAPX_CLASS_VECT ...........................................46
Connection Vector Structure: sAPX_CONN_VECT ...................................47
Shaper Vector Structure: sAPX_SHPR_VECT...........................................48

7.4 Other API Data Structures.................................................................................49
Port ID Structure: sAPX_PORT_ID ............................................................49
Class ID Structure: sAPX_CLASS_ID ........................................................49
Connection ID Structure: sAPX_CONN_ID ................................................50
Port Weight Structure: sAPX_PORT_WT...................................................50
Port Sequence Structure: sAPX_PORT_SEQ............................................51
Queue-Module Information Structure: sAPX_QE_INFO ............................51
Module Information Structure: sAPX_MODULE_INFO ..............................51
Device Information Structure: sAPX_DEV_INFO.......................................52
SAR Transmit Context Structure: sAPX_TX_CTXT ...................................53

8 Application Programming Interface.............................................................................54



S/UNI-APEX (PM7326) Driver Manual
Table of Contents

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 7
Document ID: PMC-991727, Issue 1

8.1 Driver Initialization and Shutdown Functions ....................................................54
Initializing the Driver: apexModuleInit.........................................................54
Shutting Down the Driver: apexModuleShutdown......................................54

8.2 Profile Management Functions .........................................................................55

8.3 Initialization Profile Functions............................................................................55
Setting Initialization Profile Vectors: apexSetInitProfile ..............................55
Getting Initialization Profiles: apexGetInitProfile ........................................56
Clearing Initialization Profiles: apexClrInitProfile........................................56

8.4 Port Profile Functions........................................................................................56
Setting Port Profile Vectors: apexSetPortProfile ........................................57
Getting Port Profiles: apexGetPortProfile...................................................57
Clearing Port Profiles: apexClrPortProfile ..................................................57

8.5 Class Profile Functions .....................................................................................58
Setting Class Profile Vectors: apexSetClassProfile....................................58
Getting Class Profiles: apexGetClassProfile ..............................................58
Clearing Class Profiles: apexClrClassProfile .............................................59

8.6 Connection Profile Functions ............................................................................59
Setting Connection Profile Vectors: apexSetConnProfile...........................59
Getting Connection Profiles: apexGetConnProfile .....................................60
Clearing Connection Profiles: apexClrConnProfile.....................................60

8.7 Device Addition and Removal Functions ..........................................................61
Adding Devices: apexAdd ..........................................................................61
Deleting Devices: apexDelete ....................................................................61

8.8 Device Register Access Functions....................................................................62
Reading From Device Registers: apexReadReg .......................................62
Writing To Device Registers: apexWriteReg...............................................62

8.9 Device Diagnostic Functions.............................................................................63
Testing Register Access: apexRegisterTest ...............................................63
Testing Access to External Queue Context-Memory: apexExtQCtxtTest...64
Testing Access to Internal Queue Context-Memory: apexIntQCtxtTest .....64
Testing Access to LPS Context-Memory: apexLpsCtxtTest .......................65
Testing Access to WPS Context-Memory: apexWpsCtxtTest.....................66
Testing Access to the External SDRAM Cell-Buffers: apexCellBufTest .....67
Testing the Context Memory Image: apexCtxtMemCheck .........................68

8.10 Device Reset and Initialization Functions .........................................................68
Resetting Devices: apexReset ...................................................................68
Initializing Devices: apexInit .......................................................................69

8.11 Device Activation and Deactivation Functions ..................................................70
Activating Devices: apexActivate................................................................70
Deactivating Devices: apexDeactivate .......................................................70

8.12 Queue Engine Functions...................................................................................71



S/UNI-APEX (PM7326) Driver Manual
Table of Contents

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 8
Document ID: PMC-991727, Issue 1

8.13 Direction Functions ...........................................................................................71
Updating Direction Thresholds: apexSetDirCongThrsh .............................71

8.14 Port Functions ...................................................................................................72
Setting Up Ports: apexPortSetup................................................................72
Disabling Ports: apexPortDisable ...............................................................73
Re-Enabling Ports: apexPortEnable...........................................................74
Tearing Down Ports: apexPortTeardown ....................................................74
Updating Port Congestion Thresholds: apexSetPrtCongThrsh..................75
Updating Class Scheduling Parameters: apexSetClSchd..........................76

8.15 Class Functions.................................................................................................77
Setting Up Classes: apexClassSetup.........................................................77
Disabling Classes: apexClassDisable ........................................................78
Re-Enabling Classes: apexClassEnable....................................................78
Tearing Down Classes: apexClassTeardown .............................................79
Updating Class Congestion Thresholds: apexSetClCongThrsh ................80

8.16 Shaper Functions ..............................................................................................80
Setting Up Shapers: apexShprSetup .........................................................80
Tearing Down Shapers: apexShprTeardown ..............................................81

8.17 Connection Functions .......................................................................................82
Setting Up Connections: apexConnSetup..................................................82
Disabling Connections: apexConnDisable .................................................83
Re-Enabling Connections: apexConnEnable .............................................84
Tearing Down Connections: apexConnTeardown ......................................84
Updating Connection Congestion Thresholds: apexSetConnCongThrsh..85
Updating Class Queuing Weight: apexSetConnWfqWt .............................85
Updating Shaped Single Rate Parameters: apexSetConnShpSnglRt .......86

8.18 Watchdog Patrol Functions ...............................................................................87
Setting Watchdog Patrol Parameters: apexSetWdgPatrolRng ..................87
Getting Watchdog Patrol Parameters: apexGetWdgPatrolRng..................88
Initiating a Watchdog Patrol: apexWatchdogPatrol ....................................88

8.19 Segmentation and Re-assembly Assist Functions............................................89
Transmitting Cells: apexTxCell ...................................................................89
Transmitting AAL5 Frames: apexTxFrm.....................................................90
SAR Transmit Task Function: apexSarTxTaskFn .......................................90
SAR Receive Task Function: apexSarRxTaskFn .......................................91

8.20 Multicasting Support Functions.........................................................................92
Installing the Multicasting Callback Function: apexInstallMulticastFn........92
Resetting the Multicasting Callback Function: apexResetMulticastFn.......93

8.21 Loop Port Scheduler Functions.........................................................................93
Setting Contents of the Port-Weight Table: apexLpsSetPortWts ...............93
Getting Contents of the Port-Weight Table: apexLpsGetPortWts...............94
Setting Contents of the Poll Sequence Table: apexLpsSetPollSeq............94
Getting Contents of the Poll Sequence Table: apexLpsGetPollSeq...........95

8.22 WAN Port Scheduler Functions ........................................................................96



S/UNI-APEX (PM7326) Driver Manual
Table of Contents

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 9
Document ID: PMC-991727, Issue 1

Setting Contents of the Port-Weight Table: apexWpsSetPortWts ..............96
Getting Contents of the Port-Weight Table: apexWpsGetPortWts .............96

8.23 Statistic Functions .............................................................................................97

8.24 Statistical Counts...............................................................................................97
Getting Cell Discard Counts: apexGetStatDiscardCnts..............................97
Getting Connection-Level Cell-Transmission Counts:

apexGetStatConnTxCnts .....................................................................98

8.25 Congestion Counts............................................................................................99
Getting Device-Level Congestion Counts: apexGetCongDevCnt ..............99
Getting Direction-Level Congestion Counts: apexGetCongDirCnt.............99
Getting Port-Level Congestion Counts: apexGetCongPortCnt ................100
Getting Class-Level Congestion Counts: apexGetCongClassCnt ...........100
Getting Connection-Level Congestion Counts: apexGetCongConnCnts.101

8.26 Interrupt Service Functions .............................................................................102
Servicing High-Priority Interrupts: apexHiISR ..........................................102
Servicing Low-Priority Interrupts: apexLoISR...........................................103
Processing High-Priority Interrupt-Status Information: apexHiDPR .........104
Processing Low-Priority Interrupt-Status Information: apexLoDPR .........104
Setting Interrupt Masks: apexSetIntMsk...................................................105
Getting Interrupt Masks: apexGetIntMsk..................................................106
Enabling and Disabling Interrupts: apexIntCtrl .........................................106
Getting Interrupt Counts: apexGetIntCnts ................................................107
Resetting Interrupt Counters: apexResetIntCnts......................................107
Setting Interrupt-Count Thresholds: apexSetIntThresh............................108

8.27 Application Callback Functions .......................................................................109
Indicating the Success or Failure of Cell Transmissions: indTxCell.........109
Indicating the Success or Failure of Cell Receptions: indRxCell ............. 110
Indicating the Success or Failure of Frame Transmissions: indTxFrm .... 110
Indicating the Success or Failure of Frame Receptions: indRxFrm......... 111
Inquiring Whether the Received Cell or Frame is part of Multicasting

Group: isVcMulticast .......................................................................... 112
Indicating Critical Events: indCritical ........................................................ 113
Indicating Errors: indError......................................................................... 114

9 Hardware Interface ................................................................................................... 116

9.1 Device Input and Output Functions................................................................. 116
Reading the Contents of Address Locations: sysApexRawRead............. 116
Writing the Contents of Address Locations: sysApexRawWrite ............... 116
Detecting New Devices: sysApexDeviceDetect ....................................... 116

9.2 Interrupt Service Functions ............................................................................. 117
ISR Installation and Removal Functions................................................... 117
Installing System-Specific Interrupt Handlers: sysApexIntInstallHandler . 117
Removing System-Specific Interrupt Handlers: sysApexIntRemoveHandler118
System-Specific ISR Functions ................................................................ 118
Handling High-Priority Interrupts: sysApexHiIntHandler........................... 118
Handling Low-Priority Interrupts: sysApexLoIntHandler........................... 119



S/UNI-APEX (PM7326) Driver Manual
Table of Contents

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 10
Document ID: PMC-991727, Issue 1

System-Specific DPR Functions............................................................... 119
Deferred Interrupt Processing: sysApexDPRtaskFn ................................ 119

10 RTOS Interface .........................................................................................................120

10.1 Memory Allocation and De-allocation Functions.............................................120
Allocating Memory: sysApexMemAlloc ....................................................120
Freeing Memory: sysApexMemFree ........................................................120

10.2 Buffer Management Functions ........................................................................121
Cell Buffer Functions ................................................................................121
Allocating Cell Header Structures and Buffers: sysApexAllocCellBuf ......121
Freeing Cell Header Structures and Buffers: sysApexFreeCell ...............121
Frame Buffer Functions ............................................................................121
Allocating the First Frame Buffer in a Chain: sysApexAllocFrmBuf .........121
Adding the Next Frame Buffer to a Chain: sysApexAllocNxtFrmBuf........122
Getting a Frame Buffer’s Size: sysApexGetFrmBufSz.............................122
Getting the Next Frame Buffer’s Size: sysApexGetNxtFrmBuf ................123
Freeing Frame Buffers: sysApexFreeFrm ................................................123

10.3 Timer Functions...............................................................................................123
Delaying Tasks: sysApexTaskDelay .........................................................123

10.4 Semaphore Functions .....................................................................................124
Creating Semaphores: sysApexSemCreate.............................................124
Deleting Semaphores: sysApexSemDelete .............................................124
Taking Semaphores: sysApexSemTake ...................................................125
Releasing Semaphores: sysApexSemGive..............................................125

10.5 Pre-Emption Control Functions.......................................................................125
Disabling Task Pre-emption: sysApexPreemptDis ...................................125
Enabling Task Pre-Emption: sysApexPreemptEn ....................................126

10.6 Segmentation and Re-Assembly Assist Functions .........................................126
Creating SAR Tasks: sysApexSarInstall...................................................126
Removing SAR Tasks: sysApexSarRemove ............................................127
SAR Transmit Task Function: sysApexSarTxTaskFn ...............................127
SAR Receive Task Function: sysApexSarRxTaskFn................................127
Sending Transmission Request Messages: sysApexSarTxMsg..............128

11 Porting Drivers ..........................................................................................................129

11.1 Driver Source Files..........................................................................................129

11.2 Porting Procedure ...........................................................................................130
Step 1: Porting the Hardware Interface ....................................................130
Step 2: Porting the RTOS interface ..........................................................132
Step 3: Porting the Application-Specific Elements....................................134
Step 4: Building the Driver ........................................................................135

Appendix A: Driver Return Codes ...................................................................................136

Appendix B: Coding Conventions....................................................................................140



S/UNI-APEX (PM7326) Driver Manual
Table of Contents

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 11
Document ID: PMC-991727, Issue 1

Variable Types...........................................................................................................140

Naming Conventions.................................................................................................140

Index................................................................................................................................143



S/UNI-APEX (PM7326) Driver Manual
Figures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 12
Document ID: PMC-991727, Issue 1

FIGURES

Figure 1: Driver Interfaces...........................................................................................................................17

Figure 2: Driver Architecture........................................................................................................................19

Figure 3: Driver Software States..................................................................................................................22

Figure 4: Driver Initialization and Shutdown................................................................................................24

Figure 5: Device Addition, Initialization, and Deletion .................................................................................25

Figure 6: Interrupt Service Model ................................................................................................................26

Figure 7: Port-Class Table Layout ...............................................................................................................30

Figure 8: LPS Module Data Structures........................................................................................................35

Figure 9: SAR Assist....................................................................................................................................38



S/UNI-APEX (PM7326) Driver Manual
Tables

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 13
Document ID: PMC-991727, Issue 1

TABLES

Table 1: Related Documents .........................................................................................................................2

Table 2: Driver Software States ...................................................................................................................22

Table 3: Port Poll-Sequence Numbers ........................................................................................................32

Table 4: Global Driver Database: sAPX_GDD ............................................................................................41

Table 5: Device Data Block: sAPX_DDB.....................................................................................................42

Table 6: Module Initialization Vector Structure: sAPX_MIV.........................................................................44

Table 7: Device Initialization Vector Structure: sAPX_INIT_VECT..............................................................45

Table 8: Port Vector Structure: sAPX_PORT_VECT...................................................................................46

Table 9: Class Vector Structure: sAPX_CLASS_VECT...............................................................................46

Table 10: Connection Vector Structure: sAPX_CONN_VECT ....................................................................47

Table 11: Shaper Vector Structure: sAPX_SHPR_VECT ............................................................................48

Table 12: Port ID Structure: sAPX_PORT_ID..............................................................................................49

Table 13: Class ID Structure: sAPX_CLASS_ID .........................................................................................49

Table 14: Connection ID Structure: sAPX_CONN_ID .................................................................................50

Table 15: Port Weight Structure: sAPX_PORT_WT....................................................................................50

Table 16: Port Sequence Structure: sAPX_SEQ_WT .................................................................................51

Table 17: Queue-Module Information Structure: sAPX_QE_INFO .............................................................51

Table 18: Module Information Structure: sAPX_MODULE_INFO ...............................................................51

Table 19: Device Information Structure: sAPX_DEV_INFO ........................................................................52

Table 20: SAR Transmit Context Structure: sAPX_TX_CTXT ....................................................................53

Table 21: Source Files ...............................................................................................................................129

Table 22: Include Files...............................................................................................................................129

Table 23: Return Types..............................................................................................................................136

Table 24: Variable Type Definitions ...........................................................................................................140



S/UNI-APEX (PM7326) Driver Manual
Tables

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 14
Document ID: PMC-991727, Issue 1

Table 25: Naming Conventions: Macros, Constants, and Structures ........................................................141

Table 26: Naming Conventions: Functions and Variables.........................................................................142



S/UNI-APEX (PM7326) Driver Manual
Driver Porting Quick Start

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 15
Document ID: PMC-991727, Issue 1

1 DRIVER PORTING QUICK START

This section summarizes how to port the S/UNI-APEX device driver to your hardware
and operating system (OS) platform. For more information about porting the S/UNI-
APEX driver, see page 129.

Note: Because each platform and application is unique, this manual can only offer
guidelines for porting the S/UNI-APEX driver.

The code for the S/UNI-APEX driver is organized into C source files. You may need to
modify the code or develop additional code. The code is in the form of constants, macros,
and functions. For the ease of porting, the code is grouped into “source” files (src) and
“include” files (inc). The source files contain the functions and the include files contain
the constants and macros.

To port the S/UNI-APEX driver to your platform:

1. Port the driver’s hardware interface (page 130):

° Data types
° Port the device detection function.
° Port low-level device read-and-write macros.
° Define hardware system-configuration constants.
° Port the busy-bit polling function.
° Port the error tracing function (Optional).

2.   Port the driver’s RTOS interface  (page 132):

° OS-specific services
° Utilities and interrupt services that use OS-specific services

3. Port the driver’s application-specific elements (page 134):

° Define the base value for the driver’s return codes.
° Code the indication callback functions.

4. Build the driver (page 135).



S/UNI-APEX (PM7326) Driver Manual
Driver Functions and Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 16
Document ID: PMC-991727, Issue 1

2 DRIVER FUNCTIONS AND ARCHITECTURE

This section describes the functions and software architecture of the S/UNI-APEX device
driver. It includes a discussion of the driver’s external interfaces and its main
components.

2.1 Driver Functions

The S/UNI-APEX driver supports the following functions:

• Driver initialization and shutdown (see page 54)

• Profile management (see page 55)

• Device addition and removal (see page 61)

• Device register access (see page 62)

• Device diagnostics (see page 63)

• Device reset and initialization (see page 68)

• Device activation and deactivation (see page 70)

• Queue engine operations (see page 71)

• SAR-assist operations (see pages 38, 89 and 126)

• Loop port scheduler configuration (see pages 32 and 92)

• WAN port scheduler operation (see page 96)

• Statistic functions (see page 97)

• Interrupt service operations (see pages 26, 102 and 117)

2.2 Driver Interfaces

The driver’s main function is to serve as an interface between the device and your
application and operating system. Thus, the driver itself interfaces with the device, the
application, and the operating system. Figure 1 illustrates the external interfaces defined
for the S/UNI-APEX device driver.



S/UNI-APEX (PM7326) Driver Manual
Driver Functions and Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 17
Document ID: PMC-991727, Issue 1

Figure 1: Driver Interfaces

RTOS

 Function
Calls

Indication
Callbacks

Register
Access

Hardware
Interrupts

Service Calls

Application

S/UNI-APEX Driver

S/UNI-APEX Device

Service Callbacks

Application Programming Interface

The driver’s API is a collection of high-level functions that application programmers can
call to perform the following tasks (and many others):

• Initialize the device

• Validate the device’s configuration

• Retrieve device status and statistics information

• Diagnose the device

The driver API functions use the driver library functions as building blocks to provide
this system level functionality to the application programmer (see below).

The driver API also consists of callback functions that notify the application of
significant events that take place within the device, such as cell and frame
transmission/reception and error events.



S/UNI-APEX (PM7326) Driver Manual
Driver Functions and Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 18
Document ID: PMC-991727, Issue 1

Real-Time OS Interface

The driver’s RTOS interface module consists of functions that the driver calls so that the
driver can use RTOS services. These services include

• Memory allocation and de-allocation

• Semaphore operations

• Timer operations

The RTOS interface also includes service callback functions. The driver installs these
service callbacks using RTOS service calls that install interrupt handler routines. The
RTOS invokes these service callbacks when an interrupt occurs or a timer expires.

Note: You must modify the RTOS interface code according to your RTOS environment.

Hardware Interface

The S/UNI-APEX hardware interface module consists of functions/macros that read from
and write to the S/UNI-APEX device-registers. It also consists of some system-specific
constants that you will need to define. (For example, the maximum number of S/UNI-
APEX devices to be controlled by the driver). The hardware interface also provides a
template for an ISR that the driver calls when the device raises a device interrupt. You
must modify this template based on the interrupt configuration of the application.

2.3 Main Driver Components

Figure 2 illustrates the top-level architectural components of the S/UNI-APEX device
driver. This applies in both polled and interrupt-driven operation. In polled operation, the
driver calls the ISR periodically. In interrupt operation, the interrupt directly triggers the
ISR.

The driver includes ten main components:

• Global driver database

• Interrupt service routine

• Deferred processing routine

• Driver library

• Queue engine

• Loop port scheduler

• WAN port scheduler

• Segmentation and re-assembly assist component

• Input/output component



S/UNI-APEX (PM7326) Driver Manual
Driver Functions and Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 19
Document ID: PMC-991727, Issue 1

• Status and statistics component

Figure 2: Driver Architecture

 Function
Calls

Register &
Memory Access

Hardware
Interrupts

Se
rv

ic
e

C
al

ls

Application

R
TO

S

S/UNI-APEX Device

Deferred
Processing

Routine

Interrupt
Servicing
Routine

Global
Driver DB

Interrupt
Context

S/UNI-APEX Driver

R
TO

S 
In

te
rfa

ce

Hardware Interface

Indication
Callbacks

Driver
Library

Functions

Se
rv

ic
e

C
al

lb
ac

ksDriver API

SSRAM SDRAM

SAR Assist
Component

I/O
Component

Queue
Engine

Component

WPS
Component

LPS
Component

Status &
Statistics

Component

Global Driver Database

The Global Driver Database (GDD) is the main data structure employed by the S/UNI-
APEX device driver. It serves as a central repository for driver data. The driver allocates
the GDD during driver initialization. One of the main components of the GDD is an array
of pointers to per-device context structures called Device Data Blocks (DDBs).

The DDB stores context information about the S/UNI-APEX device, such as:

• Device state

• Control information

• Initialization vector

• Callback function pointers



S/UNI-APEX (PM7326) Driver Manual
Driver Functions and Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 20
Document ID: PMC-991727, Issue 1

Interrupt Service and Deferred Processing Routines

The device driver provides an interrupt service routine (ISR) for each of the device
interrupt outputs. When the device interrupts the microprocessor, these ISRs store the
interrupt context information and clear the interrupt conditions.

The ISR routines provided by the driver simply retrieve context information. This allows
the routines to be compact and efficient. The interrupt context retrieved by these routines
is saved for deferred processing. This processing occurs in the context of separate tasks
within the RTOS.

The driver provides a deferred processing routine (DPR) that can run as a separate task.
The DPR processes the interrupt context information and invokes callbacks, which you
define, to inform the application when specific interrupt events have occurred. The driver
supports two modes for servicing interrupts:

• Asynchronous interrupt servicing

• Synchronous polling

For more information about the DPR and interrupt-servicing model, see page 26.

Driver Library

The driver library is a collection of low-level utility functions that manipulate the device
registers and the contents of the device DDBs. The driver library functions serve as
building blocks for the higher level functions that constitute the driver API. The
application software does not normally call the driver library functions.

Queue Engine

The queue engine controls the device’s queue engine functions. These functions include:

• Setting up and tearing down ports

• Setting up and tearing down classes (loop, WAN and uP)

• Setting up and tearing down connections

• Setting up and tearing down shapers

For more information about the queue engine, see pages 29 and 71.



S/UNI-APEX (PM7326) Driver Manual
Driver Functions and Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 21
Document ID: PMC-991727, Issue 1

WAN Port Scheduler

The WAN port scheduler (WPS) schedules packet transmissions to the four WAN ports.
To fairly and efficiently service these ports, the WPS uses the port weight table; this
resides in the WPS internal-context memory. When you configure WAN ports, you must
assign weights to them so that your application services the high-bandwidth ports more
often than low-bandwidth ports. The WPS provides functions that set and retrieve the
port weights assigned to the WAN ports.

Loop Port Scheduler

The loop port scheduler (LPS) controls the S/UNI-APEX loop port scheduler. This
component manipulates the loop port scheduler’s internal context memory (polling
sequence and polling weight tables) so that the driver services the S/UNI-APEX device’s
loop ports fairly and efficiently.

For more information about the LPS, see pages 32 and 92.

Segmentation and Re-assembly Assist Component

The segmentation and re-assembly (SAR) assist component performs the
insertion/extraction of cells and AAL5 frames from the microprocessor interface. This
component uses the SAR assist features of the S/UNI-APEX device to perform these
functions. The SAR transmit task injects cells or frames into the device. The SAR receive
task extracts cells or frames from the device. They both typically run as separate tasks
within the RTOS.

Note: The SAR assist component is not a full-fledged AAL5 SAR implementation. It
does not perform automatic retransmission or error correction.

The SAR Assist module also provides support for multicasting cells or frames.
Multicasting is defined as forwarding cells or frames, received on an incoming
connection, to multiple outgoing connections.

For more information about the SAR assist component, see pages 38 and 89.

Input/Output Component

The input/output component provides low-level access to the device registers and the
context memories. It uses the memory port interface to provide context-memory access.
This component provides routines to perform read, write, and mask write operation on
the context memory apertures.

The input/output component also maintains an image of the context memory in its host
memory. This image only mirrors the configuration and control fields in the context
memory. This image minimizes the number of indirect accesses through the memory port
(which affects the device and overall system performance).



S/UNI-APEX (PM7326) Driver Manual
Driver Functions and Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 22
Document ID: PMC-991727, Issue 1

The context memory image is optional. You can compile the driver so that it does not use
the context memory image. You may choose to use this option when memory resources in
the system are limited.

Statistics Component

The statistics component consists of functions that retrieve statistical and congestion
counts accumulated by the device.

2.4 Software States

Figure 3 shows the software state diagram for the S/UNI-APEX driver. State transitions
occur on the successful execution of the corresponding transition functions shown. State
information helps maintain the integrity of the driver’s DDB by controlling the set of
device operations allowed in each state. Table 2 describes the software states for the
S/UNI-APEX device as maintained by the driver.

Figure 3: Driver Software States

Present

Init Active

apexReset

apexReset apexReset

apexActivate

apexInit

apexDeactivate

Empty

apexAdd apexDelete

Table 2: Driver Software States

State Description

APEX_EMPTY The S/UNI-APEX device is not registered. This is the initial state.



S/UNI-APEX (PM7326) Driver Manual
Driver Functions and Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 23
Document ID: PMC-991727, Issue 1

State Description

APEX_PRESENT The driver has detected the S/UNI-APEX device and the device
has passed power-on self-tests. A software reset has been applied
to the device. The driver has allocated memory to store context
information about this device.

APEX_INIT An initialization vector passed by the application has successfully
initialized the S/UNI-APEX device. The driver has validated the
initialization parameters, and it has configured the device by
writing appropriate bits in the control registers of the device.

APEX_ACTIVE The driver has activated the S/UNI-APEX device. This means
that the driver has enabled the device interrupts and SAR
processing. The device is ready for normal operation.

2.5 Process Flows

This section describes two of the main processing flows of the S/UNI-APEX driver:

• Driver initialization and shutdown

• Device addition and deletion

The following flow diagrams illustrate the sequence of operations that take place for
different driver functions. The diagrams also serve as a guide to the application
programmer by illustrating the sequence in which the application must invoke the driver
API.



S/UNI-APEX (PM7326) Driver Manual
Driver Functions and Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 24
Document ID: PMC-991727, Issue 1

Driver Initialization and Shutdown

The following figure shows the functions and processes that the driver uses to initialize
and shutdown the S/UNI-APEX driver components.

Figure 4: Driver Initialization and Shutdown

These functions de-register all the initialization, port, class, and connection
parameter profiles previously registered with the driver.

This function performs module level shutdown for the APEX driver. It
deletes all devices registered with the driver and de-allocates the GDD.

Device level functions are active between module initialization and
shutdown (for example, functions that add, delete, and initialize devices).
See the following figure.

OPTIONAL: These functions register profiles for initialization, port, class,
and connection vectors. This lets you store pre-defined parameter vectors
that you validate ahead of time. Subsequently, when the driver invokes the
initialization, port, class, or connection setup functions, it only needs to
pass a profile number. This method simplifies and expedites the above
operations.

This function performs module level initialization of the S/UNI-APEX driver.
It allocates memory for the GDD and its components, and initializes its
contents.

apexSetInitProfile
apexSetPortProfile

apexSetClassProfile
apexSetConnProfile

apexModuleInit

apexClrInitProfile
apexClrPortProfile

apexClrClassProfile
apexClrConnProfil

apexModuleShutDown

END

START

Device Level Functions



S/UNI-APEX (PM7326) Driver Manual
Driver Functions and Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 25
Document ID: PMC-991727, Issue 1

Device Addition, Initialization, and Deletion

Figure 5 illustrates the typical function call sequences that occur when adding,
initializing, re-initializing and deleting devices.

Figure 5: Device Addition, Initialization, and Deletion

This function de-activates the device and removes it from normal
operation. It disables device interrupts, disables the transmission and
reception of cells and frames from the microprocessor port, and disables
the queue engine's external interfaces.

This function performs a software reset on the device. It also resets the
device context information in the DDB contents, except for the initialization
vector. This function can be invoked from any device state.

This function installs and enables interrupts, enables the transmission and
reception of cells and frames from the microprocessor port, and enables
the queue engine's external interfaces. The device is now operational and
all other APIs can be invoked.

This function initializes the device based on an initialization vector or
initialization vector profile that you provide. Your application validates the
initialization vector, then the driver stores it as part of device context
information. The device registers are then configured accordingly.

This function detects the device being added to the hardware (using
sysApexDeviceDetect). Then it performs a register readback test, assigns
a device handle for storing device information, and applies a software
reset to the device.

apexInit

apexAdd

apexDeactivate

apexReset

END

START

apexActivate

apexReset

apexDelete
This function removes the device from the list of devices being controlled
by the driver. This function also clears the device context information for
the device being deleted and frees the device handle assigned for this
device.



S/UNI-APEX (PM7326) Driver Manual
Interrupt Servicing

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 26
Document ID: PMC-991727, Issue 1

3 INTERRUPT SERVICING

The S/UNI-APEX driver services device interrupts by using an interrupt service routine
(ISR) and a deferred processing routine (DPR). The ISR traps the interrupts and saves the
interrupt context information. The DPR performs the actual processing of the saved
interrupt context information. The DPR function runs in the context of a separate task
within the RTOS.

Note: Since the DPR task processes potentially serious interrupt conditions, you should
set the DPR task’s priority higher than the application task interacting with the S/UNI-
APEX driver.

Figure 6 illustrates the interrupt service model used in the S/UNI-APEX driver design.

Figure 6: Interrupt Service Model

apexLoISR

sysApexLoIntHandler

apexHiDPR

Interrupt Status

sysApexDPRTask

Application

apexHiISR

sysApexHiIntHandler

apexSarRxTaskFn

sysApexSarRxTaskFn

apexLoDPR

Indication Callbacks

indCritical

indError

indRxCell
indRxFrm

S/UNI-APEX Driver

High-Priority
Message

The interrupt service code includes some system-specific code that you provide (routines
prefixed by sysApex); it also includes some application-independent code  that comes
with this driver and does not change from application to application (prefixed by apex).

You must implement the following system-specific interrupt-handler routines and install
them in the interrupt vector table of the system processor: sysApexHiIntHandler and
sysApexLoIntHandler. They correspond to the high and low priority interrupt pins of
the S/UNI-APEX device. The microprocessor invokes these routines when one or more
S/UNI-APEX devices interrupt the processor.



S/UNI-APEX (PM7326) Driver Manual
Interrupt Servicing

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 27
Document ID: PMC-991727, Issue 1

3.1 High-Priority Interrupt Servicing

When a high priority interrupt occurs, sysApexHiIntHandler invokes a driver
provided routine, apexHiISR, for each device that has high-priority interrupt processing
enabled. The apexHiISR function reads the high-priority interrupt status-register of the
device and returns with the status information if a valid status bit is set. Then
sysApexHiIntHandler sends this status information to the DPR task via a
high-priority messaging function to the DPR task.

The DPR task processes this information using the driver provided routine, apexHiDPR.
This function updates the interrupt counters for the interrupt events causing the interrupt.
For each event that crosses its threshold, it invokes an indication callback,
indCritical. The input arguments passed to this indication function include your
context for the device, the event identifier, and any applicable event information.

After processing all interrupt events, the DPR exits after enabling the high-priority
interrupt processing.

3.2 Low-Priority Interrupt Servicing

When a low priority interrupt occurs, sysApexLoIntHandler invokes a driver provided
routine, apexLoISR, for each device that has low-priority interrupt processing enabled.
The apexLoISR function reads the low-priority interrupt error-register and low-priority
interrupt status-register. After that, it returns the status information if valid error or status
conditions are detected. The driver then selectively sends the status information to one of
two tasks, depending on the nature of the condition(s) detected:

• The SAR receive task

• The DPR task

A system-specific routine, sysApexSarRxTaskFn, runs as a separate task (SAR
receive task) within the RTOS. This task waits for messages, sent by
sysApexLoIntHandler, to arrive at an associated message queue. These messages
correspond to arrival of cell(s) in the SAR TX Data register(s)

When sysApexSarRxTaskFn receives a message, it invokes the driver-provided
routine, apexSarRxTaskFn. The apexSarRxTaskFn routine takes the appropriate
actions based on the status information received in the message. Actions include
extracting cells/frames from the SAR TX registers and reporting frame re-assembly
timeouts or length errors to the application via indication callback functions.

Another system-specific routine, sysApexDPRtask, runs as a separate task (DPR task)
within the RTOS. This task also waits for messages, sent by sysApexLoIntHandler, to
arrive at an associated message queue. These messages correspond to interrupt conditions
that are not SAR-related. These events include the following:



S/UNI-APEX (PM7326) Driver Manual
Interrupt Servicing

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 28
Document ID: PMC-991727, Issue 1

• Port, class, and VC maximum threshold errors

• VC cell receive error, re-assembly length error, and re-assembly timeout error

• WAN and loop transmit-cell transfer error

• WAN and loop receive runt-cell error, parity error

When the driver receives a message, it invokes the driver-supplied function, apexLoDPR.
This function updates the interrupt counters for the interrupt events that cause the
interrupt. For each event that crosses its threshold, it invokes an indication callback,
indError. The input arguments passed to this indication function include your context
for the device, the event identifier, and any applicable event information.

After processing all interrupt events, the DPR exits after enabling the low-priority error
interrupt processing.

Note: The driver-provided routines, apexHiISR, apexLoISR, apexSarRxTaskFn,
apexHiDPR, and apexLoDPR do not specify a communication mechanism between the
ISRs and tasks. Therefore, you have full flexibility in choosing a communication
mechanism between the two. The most common way to implement this communication
mechanism is to use a message queue, a service that most RTOSs provide.

3.3 Installation and Removal of Interrupt Handlers

You must implement the system-specific routines, sysApexHiIntHandler,
sysApexLoIntHandler and sysApexDPRtask. Your interrupt installation routine,
sysApexIntInstallHandler, installs the interrupt handlers
(sysApexHiIntHandler and sysApexLoIntHandler) in the interrupt vector table of
the processor.

The sysApexDPRtask is spawned as a task during the first time invocation of
sysApexIntInstallHandler. In addition, sysApexIntInstallHandler also
creates the communication channels between sysApexLoIntHandler and
sysApexDPRtask. Programmers usually implement this communication channel as a
message queue.

Similarly, during removal of interrupts, the driver removes sysApexHiIntHandler and
sysApexLoIntHandler from the microprocessor’s interrupt vector table and then
deletes the sysApexDPRtask task. You must implement the function,
sysApexIntRemoveHandler, that removes the interrupt handlers and the DPR task.



S/UNI-APEX (PM7326) Driver Manual
Queue Engine

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 29
Document ID: PMC-991727, Issue 1

4 QUEUE ENGINE

The driver’s queue engine controls and maintains the external and internal queue context
information of the S/UNI-APEX devices. It also keeps track of the configured ports,
classes, shapers, and connections and identifies how these entities are associated with
each other.

4.1 Queue-Engine Data Structures

The queue engine module uses two main data structures, the port-class table and the ICI
table. The port-class table is a data structure used to efficiently look up all the VCs that
are associated with a port-class combination. The ICI array is used to efficiently lookup
the port-class combination that a VC is associated with. Note that these two constructs
are actually two different views of the same block of memory.

4.2 Port-Class and ICI Tables

Figure 7 is a diagrammatic representation of the queue control table and the ICI array.
The ICI array is an array of 16k/64k elements. Each element has the following structure:

typedef struct _apx_ici_rec

{

UINT4 conn;

struct _apx_ici_rec *prev;

struct _apx_ici_rec *next;

} sAPX_ICI_REC;



S/UNI-APEX (PM7326) Driver Manual
Queue Engine

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 30
Document ID: PMC-991727, Issue 1

Figure 7: Port-Class Table Layout

Class 0 Class 1 Class 2 Class 3
uP Port

Class 0 Class 1 Class 2 Class 3
WAN
Port 3

Class 0 Class 1 Class 2 Class 3
WAN
Port 0

Class 0 Class 1 Class 2 Class 3
Loop Port
2k-1

Class 0 Class 1 Class 2 Class 3

vc 23

vc 32

vc 95 vc 55 vc 05

vc 99vc 64

vc 72 vc 103

vc 220

Loop
Port 0

ICI  : 16 bit connection id
Port : 12 bit port id
CL   : 2 bit class id
E     : connection enable bit
C     : connection configure bit

P     : previous ICI record ptr
N     : next ICI record ptr

ICI=23PortCLECICI 23

ICI 64k-1

ICI 24

  ICI 0

  ICI 1

  ICI 2

ICI Table Port-class Table

P N

The contents of the member, ‘conn’ , that belongs to this structure are used to look up the
port-class combination that a connection is associated with. The ‘prev’ and ‘next’ pointers
are used to form ordered linked lists of connections that are associated with a particular
port-class combination. Each record of the table has the following structure:

typedef struct _apx_prt_class_rec

{

UINT4 status;

UINT2 numICIs[APX_NUM_CLASSES];

sAPX_ICI_REC *psIciLstHead[APX_NUM_CLASSES];

sAPX_ICI_REC *psIciLstTail[APX_NUM_CLASSES];

} sAPX_PRT_CLASS_REC;



S/UNI-APEX (PM7326) Driver Manual
Queue Engine

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 31
Document ID: PMC-991727, Issue 1

The port-class table is comprised of the following arrays of port-class records:

typedef struct _apx_prt_class_tbl

{

sAPX_PRT_CLASS_REC *prec[APX_NUM_PORT_TYPES];

sAPX_PRT_CLASS_REC lp[APX_NUM_LOOP_PORTS];

sAPX_PRT_CLASS_REC wp[APX_NUM_WAN_PORTS];

sAPX_PRT_CLASS_REC up;

} sAPX_PRT_CLASS_TBL;

The table consists of ordered linked lists of connections associated with each port-class
combination for loop, WAN, and microprocessor ports. The queue engine module uses
this information to tear down a port or class gracefully. For example, to shutdown loop
port 0, the queue engine module checks the table to figure out which connections and
classes are associated with that port. In this case, connections 23, 32, 95, 55, 64, 72, 05,
99, 103 and 220 are torn down; then classes 0 through 3; and finally, port 0 is shutdown.

4.3 Queue Control Block

The queue control block contains all the bookkeeping information required by the queue
engine module.

typedef struct _apx_qe_cb

{

sAPX_ICI_REC sIciTbl[APX_MAX_NUM_VCS];

sAPX_PRT_CLASS_TBL sPrtClTbl;

UINT2 u2WdgStartIci;

UINT2 u2WdgEndIci;

UINT2 u2PrtCfgCnt[APX_NUM_PORT_TYPES];

UINT2 u2ClCfgCnt[APX_NUM_PORT_TYPES];

UINT4 u4ConnCfgCnt[APX_NUM_PORT_TYPES];

} sAPX_QE_CB;

The sAPX_QE_CB structure contains the following information:

• The ICI and port-class tables previously described

• The watchdog patrol start and end ICI parameters (specified in the initialization
vector)

• Counts for the number of configured ports, classes, and connections for each port
type: uP, loop, and WAN



S/UNI-APEX (PM7326) Driver Manual
Loop Port Scheduler

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 32
Document ID: PMC-991727, Issue 1

5 LOOP PORT SCHEDULER

The loop port scheduler (LPS) schedules packet transmissions to the 2048 loop ports that
the device can handle. In order for all these ports to be serviced fairly and efficiently, the
loop port scheduler uses the port weight and port sequence tables that reside in the LPS
internal context memory.

When loop ports are configured, they have to be assigned weights and sequence numbers
to achieve the following:

• High-bandwidth ports are serviced more often than ports with low-bandwidth
requirements. The LPS module achieves this goal by assigning lower weights to
high-bandwidth ports and higher weights to low-bandwidth ports. You must assign
the weight values.

• The number of ports that need to be polled (to see if they can accept a packet for
transmission) at any time is minimal. The port polling times should be “spread-out”
and not “bunched-up”. The APEX driver’s LPS module achieves this by assigning
sequence number to ports (that have the same weight), such that the number of ports
associated with each sequence number is evenly distributed across the sequence
numbers used for each weight.

5.1 Assigning Sequence Numbers

The sequence numbers assigned depend on the weight assigned to the node. For ports
with weight 1, the sequence number assigned is either 0 or 1. For ports with weight 2, the
sequence number is one of 0, 1, 2 or 3. Thus the number of possible sequence numbers
increases with the weight assigned to a port. Subsequently, for ports assigned a weight of
7, the maximum possible range of sequence numbers is utilized, namely; 0 through 127.

Table 3: Port Poll-Sequence Numbers

Sequence Numbers Assigned for Each WeightNumber
of Port
Added Wt 0 Wt 1 Wt 2 Wt 3 Wt 4 Wt 5 Wt 6 Wt 7

1 0 0 0 0 0 0 0 0

2 0 1 2 4 8 16 32 64

3 0 0 1 2 4 8 16 32

4 0 1 3 6 12 24 48 96

5 0 0 0 1 2 4 8 16

6 0 1 2 5 10 20 40 80

7 0 0 1 3 6 12 24 48



S/UNI-APEX (PM7326) Driver Manual
Loop Port Scheduler

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 33
Document ID: PMC-991727, Issue 1

Sequence Numbers Assigned for Each WeightNumber
of Port
Added Wt 0 Wt 1 Wt 2 Wt 3 Wt 4 Wt 5 Wt 6 Wt 7

8 0 1 3 7 14 28 56 112

- - - - - - - - -

2041 0 0 0 0 1 3 7 15

2042 0 1 2 4 9 19 39 79

2043 0 0 1 2 5 11 23 47

2044 0 1 3 6 13 27 55 111

2045 0 0 0 1 3 7 15 31

2046 0 1 2 5 11 23 47 95

2047 0 0 1 3 7 15 31 63

2048 0 1 3 7 15 31 63 127

Since sequence numbers should be assigned in a manner that the port polling times are
“spread-out” and not “bunched-up,” the sequence number are not assigned in a linear
order. Referring to Table 3, consider the sequence numbers for weight 3. The possible
sequence numbers are 0, 1, 2, 3, 4, 5, 6 and 7.  The first port of weight 3 is given the
sequence number 0. The second port of weight 3 is assigned the sequence number 4(and
not 1). This would “spread-out” the time interval between scheduling of these two ports
with the same weight. The third port of weight 3 would be assigned the sequence number
2 and the fourth port is given the sequence number 6 and so on.

Note: Since the number of ports assigned to a particular weight can be greater than the
number of sequence numbers available for that weight, the sequence numbers are
repeated. For example, in the table the sequence numbers for weight 2 are repeated every
4 ports, whereas the sequence numbers for weight 3 are repeated every 8 ports and so on.

5.2 LPS Data Structures

The LPS module uses two main data structures: the poll sequence database and the port
sequence table. The poll sequence database is a data structure used to efficiently assign
sequence numbers to ports of different weights, such that the sequence numbers are
distributed. The port sequence table is used to efficiently lookup the sequence number
already assigned to a particular port.



S/UNI-APEX (PM7326) Driver Manual
Loop Port Scheduler

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 34
Document ID: PMC-991727, Issue 1

5.3 Poll Sequence Database

Figure 8 shows that the Poll Sequence Database is a two dimensional array. It consists of
8 columns, each column corresponding to a particular weight (0 – 7). The number of rows
corresponds to the maximum number of loop ports.  Each element of the array is a poll
sequence record, which has the following structure:

typedef struct _apx_poll_seq_rec

{

UINT1 u1PortWt;

UINT1 u1PortSeq;

UINT2 u2PortNum;

} sAPX_POLL_SEQ_REC;

When the poll sequence database is initialized, the port number for all the poll sequence
records is set to 0xFFFF. This means that the sequence number associated with the node
is unassigned. All the poll sequence records in the same column are assigned the same
weight, which is the same as the column index of the array.

The sequence numbers in each column of the poll sequence database are initialized by
following the same procedure used to assign sequence numbers for each column in Table
3.



S/UNI-APEX (PM7326) Driver Manual
Loop Port Scheduler

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 35
Document ID: PMC-991727, Issue 1

Figure 8: LPS Module Data Structures

Port = 2040
Wt   =  0
Seq  = 0

Port  = 3
Wt   =  1
Seq  = 0

Port = 2000
Wt   =  2
Seq  =  0

Port  = 11
Wt   =  3
Seq  = 0

Port = 0xffff
Wt   =  4
Seq =  0

Port = 25
Wt   =  7
Seq  = 0

Port  = 0
Wt   =  0
Seq  = 0

Port = 0xffff
Wt   =  1
Seq  = 1

Port = 0xffff
Wt   =  2
Seq  =  2

Port  = 0xffff
Wt   =  3
Seq  = 4

Port = 0xffff
Wt   =  4
Seq =  8

Port = 22
Wt   =  7
Seq = 64

Port  = 1
Wt   =  0
Seq  = 0

Port = 0xffff
Wt   =  1
Seq  = 0

Port = 0xffff
Wt   =  2
Seq  =  1

Port  = 0xffff
Wt   =  3
Seq  = 2

Port = 0xffff
Wt   =  4
Seq =  4

Port = 2046
Wt   =  7
Seq  = 32

Port  = 2
Wt   =  0
Seq  = 0

Port = 0xffff
Wt   =  1
Seq  = 1

Port = 0xffff
Wt   =  2
Seq  =  3

Port  = 0xffff
Wt   =  3
Seq  =  6

Port = 0xffff
Wt   =  4
Seq =  12

Port = 1001
Wt   =  7
Seq  = 96

Port = 0xffff
Wt   =  0
Seq  = 0

Port = 0xffff
Wt   =  1
Seq  = 0

Port = 0xffff
Wt   =  2
Seq  =  0

Port  = 0xffff
Wt   =  3
Seq  = 1

Port = 0xffff
Wt   =  4
Seq =  2

Port = 0x28
Wt   =  7
Seq  = 16

Port = 0xffff
Wt   =  0
Seq  = 0

Port = 0xffff
Wt   =  1
Seq  =  1

Port = 0xffff
Wt   =  2
Seq  =  2

Port  = 0xffff
Wt   =  3
Seq  = 5

Port = 0xffff
Wt   =  4
Seq =  10

Port = 2045
Wt   =  7
Seq = 80

Port = 0xffff
Wt   =  0
Seq  = 0

Port = 0xffff
Wt   =  1
Seq  =  0

Port = 0xffff
Wt   =  2
Seq  =  1

Port  = 0xffff
Wt   =  3
Seq  =  3

Port = 0xffff
Wt   =  4
Seq =  6

Port = 0xffff
Wt   =  7
Seq = 48

Port = 0xffff
Wt   =  0
Seq  = 0

Port = 0xffff
Wt   =  1
Seq  =  1

Port = 0xffff
Wt   =  2
Seq  =  3

Port  = 0xffff
Wt   =  3
Seq  = 7

Port = 0xffff
Wt   =  4
Seq =  14

Port = 0xffff
Wt   =  7
Seq = 112

Port = 0xffff
Wt   =  0
Seq  = 0

Port = 0xffff
Wt   =  1
Seq  =  0

Port = 0xffff
Wt   =  2
Seq  =  1

Port  = 0xffff
Wt   =  3
Seq  = 3

Port = 0xffff
Wt   =  7
Seq = 7

Port = 0xffff
Wt   =  7
Seq =   63

Port = 0xffff
Wt   =  0
Seq  = 0

Port = 0xffff
Wt   =  1
Seq  =  1

Port = 0xffff
Wt   =  2
Seq  =  3

Port  = 0xffff
Wt   =  3
Seq  = 7

Port = 0xffff
Wt   =  7
Seq = 15

Port = 0xffff
Wt   =  7
Seq = 147

weight 0:
nxtAvlSeqIdx
 = 4     

weight 1:
nxtAvlSeqIdx
 = 1     

weight 2:
nxtAvlSeqIdx
 = 1     

weight 3:
nxtAvlSeqIdx
 = 1     

weight 4:
nxtAvlSeqIdx
 = 0     

weight 7:
nxtAvlSeqIdx
 = 6

 Port 0

 Port  1

    :

 Port 2044

 Port 2045

 Port 2046

 Port 2047

Next Available Sequence Index for each weight

Poll Sequence DatabasePort Sequence Table



S/UNI-APEX (PM7326) Driver Manual
Loop Port Scheduler

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 36
Document ID: PMC-991727, Issue 1

5.4 Port Sequence Table

The port sequence table is an array of pointers to poll sequence records. The purpose of
this table is to efficiently lookup the sequence number assigned to a particular port. On
initialization each entry of the port sequence table will be set to NULL since none of the
ports have yet been assigned a sequence number. Each time a sequence number is
assigned to a port, an entry in the port sequence table, indexed by the port number, is
updated.

In Figure 8, the entry in the port sequence table for port 2046, points to the poll sequence
record in column 7 and row 2; this has a sequence number of 32 associated with it.

5.5 Assigning Port Sequence Numbers

When a loop port is added, depending on the weight of the port, the driver routine goes to
a particular column of the poll sequence database and, starting from the first row, it
searches for the first unassigned poll sequence record. The sequence number in this
record is the one assigned to the port. To expedite this process, a ‘next available sequence
index’ array, of a dimension equal to the number of weights, is created. This array has an
entry for each column of the poll sequence database and contains the index of the next
unassigned poll sequence record in the corresponding column. At initialization all the
index values will be zero. The next available sequence index for a column is updated
each time a port is added or deleted from that column.

Consider an example where we have to assign a sequence number to loop port 10, which
has a weight of 7. In the figure, the entry for weight 7 in the next available sequence
index array is 6. Looking at the poll sequence database, the record at column 7 and row 6
is unassigned (since the port number entry is 0xFFFF). So the sequence number 48,
which is associated with this record is assigned to loop port 10. To indicate that the
sequence number has been assigned the port number for the poll sequence record is set to
10.

The entry for port 10 in the port sequence table is set to point to the poll sequence record
at column 7 and row 6. The next available sequence number index for weight 7 is updated
to 7.



S/UNI-APEX (PM7326) Driver Manual
Loop Port Scheduler

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 37
Document ID: PMC-991727, Issue 1

5.6 Updating Port Sequence Numbers

On deleting a port, the driver routine gets the address of the poll sequence record from
the port sequence table using the port number as the index. The poll sequence record is
then freed. In this scenario, there is a free sequence number in the middle of a series of
sequence numbers assigned to ports of the same weight. Note that deleting a few ports
could potentially lead to a situation where the port polling times for ports of the same
weight are “bunched up.” To avoid this situation, when a port of a particular weight is
deleted, we reassign this sequence number to another port; specifically, a port that meets
the following criteria: the port has the same weight, and the port is the last one in the
series of sequence numbers assigned for this weight. By doing this, instead of having a
free sequence number in the middle of a series of assigned sequence numbers for the
same weight, we free the sequence number that is at the end of the series. Doing this
guarantees that the sequence numbers remain “distributed.”

Referring to the figure, consider an example where we have to delete port number 2046.
Using the port sequence table, we get a pointer to the poll sequence record at column 7
and row 2. Deleting the port frees up the sequence number 32. This sequence number
needs to be reassigned to another port. The port that meets the criteria for reassignment is
port 2045, since it has a weight of 7 and is the last one in the series of assigned sequence
number for weight 7. So port 2045 is assigned sequence number of 32. The sequence
number 80, previously assigned to port 2045 is freed. The next available poll sequence
index entry for weight 7 is changed to 5. The entry for port 2045, in the port sequence
table, now points to poll sequence node at column 7 and row 2.



S/UNI-APEX (PM7326) Driver Manual
SAR Assist

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 38
Document ID: PMC-991727, Issue 1

6 SAR ASSIST

The SAR component provides the following functions:

• Insertion and extraction of cells

• Insertion and extraction of AAL5 frames

• Multicast forwarding of cells on multiple VCs

Figure 9: SAR Assist

extract cell/frame and
invoke indication callback

forward cell/frame to
outgoing connections of

multicasting group

Application Task

sysApexSarTxTaskFn

apexTxCell,
apexTxFrm

indTxCell,
indTxFrm

message queue

yes

no

isVcMulticast?

Application Task

indRxCell,
indRxFrm

sysApexSarRxTaskFn

message queue

sysApexLoIntHandler

APEX low-priority
        interrupt



S/UNI-APEX (PM7326) Driver Manual
SAR Assist

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 39
Document ID: PMC-991727, Issue 1

Figure 9 illustrates the SAR-Assist component’s architecture. The SAR Assist component
is implemented as a set of two tasks. One task is responsible for transmitting cells and
frames, the other is responsible for receiving cells and frames. Both tasks are spawned
when the first device is activated by invoking apexActivate. In addition to creating the
tasks, apexActivate will also create a message queue for each task; this queue is used
to communicate with the task.

Insertion of cells and frames

When the user invokes apexTxCell or apexTxFrm to transmit a cell or frame, the
information is encapsulated into a message structure and is sent to the message queue of
the SAR transmit task. The transmit task then dequeues the message and calls the
appropriate routines to transmit the cell or frame. Once the transmission is complete, it
invokes the indication callback functions indTxCell or indTxFrm, to inform the user
about the status.

Extraction of cells and frames

When a low priority interrupt occurs and the low priority interrupt handler determines the
cause of the interrupt to be the arrival of cells at the SAR module, it sends a message to
the SAR receive task.

Once a message is received by the SAR receive task, it invokes the driver-provided
routine, apexSarRxTaskFn. The apexSarRxTaskFn routine will scan through the four
class queues, in order of priority as specified by the user in the initialization vector. If the
multicasting support is not activated, the SAR receive task retrieves the cells/frames and
saves them in a buffer. It then invokes the indication callback functions indRxCell or
indRxFrm to inform the application about the receipt of the cell/frame and provides a
pointer to the header and payload.

Multicast forwarding

The SAR module also provides support for multicasting cells and frames. Multicasting is
defined as: forwarding a cell or frame received on an incoming connection to multiple
outgoing connections. The incoming connection and the outgoing connections together
comprise a multicast group. The multicast forwarding feature is enabled by installing the
multicasting callback function, isVcMulticast,  using the routine
apexInstallMulticastFn. The multicasting support is disabled by invoking
apexResetMulticastFn.

When the multicast forwarding feature is enabled, each time a cell or frame is received by
the SAR receive task, the multicasting callback function is invoked with the connection
ID of the received cell as an input. The multicasting callback function, which is provided
by the user, determines whether the connection ID belongs to a multicasting group.



S/UNI-APEX (PM7326) Driver Manual
SAR Assist

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 40
Document ID: PMC-991727, Issue 1

If the connection does belong to a multicast group, the callback function provides
information about the number of outgoing connections and the connection id for each
outgoing connection. The SAR receive task then forwards the cell or frame to these
outgoing connection. It should be noted that in the event that the cell/frame is multicast,
the cell/frame is not saved in a buffer and the indication callback functions indRxCell
or indRxFrm are not invoked. The contents of the cell and frame are not checked for
errors in payload, such as CRC errors, errors in frame length etc.

On the other hand, if the connection does not belong to a multicast group, the callback
function returns the number of outgoing connections as 0. The SAR receive task then
retrieves the cell or frame, saves it to a buffer, and invokes the callback functions
indRxCell or indRxFrm (as in the case where multicasting support is not enabled).



S/UNI-APEX (PM7326) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 41
Document ID: PMC-991727, Issue 1

7 DATA STRUCTURES

The following are the main data structures used by the S/UNI-APEX driver.

7.1 Global Driver Database

Table 4: Global Driver Database: sAPX_GDD

Member Name Type Description

u4Mode UINT4 1: Interrupt mode

2: Polling mode
u4MemSz UINT4 Total memory allocated by driver
u4ImgRd UINT4 1: Read from driver’s context

memory image

0: Read from actual physical context
memory

semApex APX_SEM_ID Semaphore to protect critical sections
of driver

u2NumDevs UINT2 Number of devices currently
registered.

u2NumDevsActive UINT2 Number of devices in active state
sMiv sAPX_MIV Module initialization vector
psDdb sAPX_DDB * Array of (u2MaxDevs) device data

block (DDBs) pointers of the
registered devices

psInitProfs sAPX_INIT_VECT * An array of pointers to different
initialization vector profiles. A profile
simply serves as a “canned
configuration” that can be used to
initialize a device without having to
pass all the initialization parameters
every time a device is configured.
Instead, the application passes a
profile number. The driver then
indexes this array, obtains the
initialization vector, and configures
the device accordingly.



S/UNI-APEX (PM7326) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 42
Document ID: PMC-991727, Issue 1

Member Name Type Description

psPortProfs sAPX_PORT_VECT * An array of pointers to port-parameter
vector profiles. You can use these
profile parameters to configure loop,
WAN and uP ports easily without
having to pass all the port parameters
each time you add a port. This is
useful when several ports have the
same parameters.

psClassProfs sAPX_CLASS_VECT * An array of pointers to class vector
profiles

psConnProfs sAPX_CONN_VECT * An array of pointers to
connection-parameter vector profiles

7.2 Device Data Blocks

Each device data block (DDB) stores control information for a single S/UNI-APEX
device. The driver allocates a DDB when the driver registers a new device. The driver
de-allocates it when the driver deregisters the device.

Table 5: Device Data Block: sAPX_DDB

Member Name Type Description

u4Valid UINT4 Indicates that this is a valid DDB if its value is
APX_VALID

pSysInfo void * Pointer to system-specific device information.
For example, in PCI bus environments, the
bus, device, function numbers, IRQ
assignment.

eDevState eAPX_DEV_STATE Device state, which can be one of the
following:

• APX_PRESENT

• APX_INIT

• APX_ACTIVE

u4BaseAddr UINT4 Base address of the device



S/UNI-APEX (PM7326) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 43
Document ID: PMC-991727, Issue 1

Member Name Type Description

usrCtxt APX_USR_CTXT Pointer to device context information, which
the application maintains. Your application
must pass this pointer while adding the
device. The driver passes this information
when it invokes the indication callbacks.

u4CbDiagMd UINT4 Cell-buffer diagnostic access-mode:

• CB_DIAG_DISABLED

• CB_DIAG_READ

• CB_DIAG_WRITE

u4MaxVCs UINT4 Maximum number of VCs to be used by
device

u4MaxCellBufs UINT4 Maximum number of cell buffers (for
queuing) to be used by device

u1LpTxECIPreEn UINT1 Indicates if ECI prepend is expected on the
loop transmit interface

u1LpTxHecDis UINT1 Indicates if HEC/UDF field is expected on the
loop transmit interface

u1WanTxECIPreEn UINT1 Indicates if ECI prepend is expected on the
WAN transmit interface

u1WanTxHecDis UINT1 Indicates if HEC/UDF field is expected on the
WAN transmit interface

u2LpTxSwPreEn UINT2 Indicates if a switch tag prepend is expected
on the loop transmit interface

u2WanTxSwPreEn UINT2 Indicates if a switch tag prepend is expected
on the WAN transmit interface

u4QLClsStartAddr UINT4 Offset for the start of the loop-class context
records in the external-queue context memory

u4ShprStartAddr UINT4 Offset for the start of the shaper TxSlot
context records in the external-queue context
memory

u4CellStartAddr UINT4 Offset for the start of the cell context records
in the external-queue context memory

sInitVect sAPX_INIT_VECT Device configuration information that the
application passes to the driver. The driver
writes to the appropriate device registers,
based on the contents of this vector.

sCtxt sAPX_CTXT_IMG Driver’s image of the context memory



S/UNI-APEX (PM7326) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 44
Document ID: PMC-991727, Issue 1

Member Name Type Description

sIsmCb sAPX_ISM_CB Interrupt service control block
sQeCb sAPX_QE_CB Queue-engine control block
sSarCb sAPX_SAR_CB SAR-assist control block
sLpsCb sAPX_LPS_CB LPS control block

7.3 Configuration Vectors

Module Initialization Vector Structure: sAPX_MIV

The application allocates the module initialization vector before initializing an S/UNI-
APEX device. The module initialization vector defines the number of profiles used by the
driver.

Table 6: Module Initialization Vector Structure: sAPX_MIV

Member Name Type Description

u2MaxInitProfs UINT2 Maximum number of initialization profiles supported
by the driver.

u2MaxPortProfs UINT2 Maximum number of port profiles supported by the
driver.

u4MaxClassProfs UINT4 Maximum number of class profiles supported by the
driver.

u4MaxConnProfs UINT4 Maximum number of connection profiles supported
by the driver.

Device Initialization Vector Structure: sAPX_INIT_VECT

The application allocates the initialization vector before initializing an S/UNI-APEX
device. The initialization vector contains various configuration parameters that the driver
uses to program the device’s control registers. It is the responsibility of the application to
free the initialization vector memory.



S/UNI-APEX (PM7326) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 45
Document ID: PMC-991727, Issue 1

Table 7: Device Initialization Vector Structure: sAPX_INIT_VECT

Member Name Type Description

u4Valid UINT4 Indicates whether or not this vector’s contents
are valid:

• APX_VALID

• APX_INVALID

Note: You should not set this field.
u1SarRxPri[4] UINT1 Service priority for each of the four classes of

the uP port
u4MaxVCs UINT4 Maximum number of VCs
u4MaxCellBufs UINT4 Maximum number of cell buffers available for

queuing
sRegs sAPX_REGS Contains the values to be written to the control

registers of the device
indCritical APX_IND_INTR Indication callback routine, invoked by the

DPR, to notify the application of a
high-priority interrupt event

indError APX_IND_INTR Indication callback routine, invoked by the
DPR, to notify the application of a low-priority
interrupt event

indTxCell APX_IND_TX_CELL Indication callback routine, invoked by the
SAR transmit task, to confirm the success or
failure of a cell transmission request by the
application

indTxFrm APX_IND_TX_FRM Indication callback routine, invoked by the
SAR transmit task, to confirm the success or
failure of an AAL5 frame-transmission request
by the application

indRxCell APX_IND_RX_CELL Indication callback routine, invoked by the
SAR receive task, to notify the application of
the reception of a cell

indRxFrm APX_IND_RX_FRM Indication callback routine, invoked by the
SAR receive task, to notify the application of
the reception of an AAL5 frame



S/UNI-APEX (PM7326) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 46
Document ID: PMC-991727, Issue 1

Port Vector Structure: sAPX_PORT_VECT

The driver uses the port parameters vector to store port configuration profiles. They also
pass port configuration parameters to the driver.

Table 8: Port Vector Structure: sAPX_PORT_VECT

Member Name Type Description

u1Valid UINT1 Indicates whether or not this vector’s contents
are valid:

• APX_VALID

• APX_INVALID

Note: You should not set this field.
u1Clp0Thrsh UINT1 Maximum threshold for CLP0 cells
u1Clp1Thrsh UINT1 Maximum threshold for CLP1 cells
u1MaxThrsh UINT1 Maximum threshold for all cells
u4PollWt UINT4 LPS (or WPS) poll weight
u4PollSeq UINT4 LPS poll sequence
sCschd sAPX_CS_VECT Class scheduler parameters

Class Vector Structure: sAPX_CLASS_VECT

The driver uses the class parameters vector to store class configuration profiles. It also
passes class configuration parameters to the driver.

Table 9: Class Vector Structure: sAPX_CLASS_VECT

Member Name Type Description

u4Valid UINT4 Indicates whether or not this vector’s contents are valid:

• APX_VALID

• APX_INVALID

Note: You should not set this field.
u1ShpFlg UINT1 1: This class is shaped

0: This class in not shaped
u1Clp0Thrsh UINT1 Maximum threshold for CLP0 cells
u1Clp1Thrsh UINT1 Maximum threshold for CLP1 cells



S/UNI-APEX (PM7326) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 47
Document ID: PMC-991727, Issue 1

Member Name Type Description

u1MaxThrsh UINT1 Maximum threshold for all cells

Connection Vector Structure: sAPX_CONN_VECT

The driver uses the connection parameters vector to store connection configuration
profiles. It also passes connection configuration parameters to the driver.

Table 10: Connection Vector Structure: sAPX_CONN_VECT

Member Name Type Description

u4Valid UINT4 Indicates whether or not this vector’s contents
are valid:

• APX_VALID

• APX_INVALID

Note: You should not set this field.
u1EndSegOam UINT1 00b: No redirection of OAM cells to uP

01b: Redirection of segment OAM cells to uP

10b: Redirection of end-end OAM cells to uP

11b: Redirection of both segment and end-end
OAM cells to uP

u1VcVpc UINT1 VC or VPC
u1Clp0MinThrsh UINT1 Minimum number of CLP0 cells guaranteed to

be allowed on a per-VC basis
u1Clp0Thrsh UINT1 Maximum threshold for CLP0 cells
u1Clp1Thrsh UINT1 Maximum threshold for CLP1 cells
u1MaxThrsh UINT1 Maximum threshold for all cells
u1EfciMd UINT1 EFCI marking mode
u1GfrMd UINT1 GFR mode
u4RemapMd UINT4 VC remapping mode (0-3)



S/UNI-APEX (PM7326) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 48
Document ID: PMC-991727, Issue 1

Member Name Type Description

eQtype eAPX_Q_TYPE Queuing type, which can be one of the
following:

• WFQ

• FCQ

• SFQ

sRemap sAPX_VC_REMAP VC address remap information
uQinfo uAPX_VC_Q_INFO VC queuing parameters

Shaper Vector Structure: sAPX_SHPR_VECT

The shaper-parameters vector stores shaper configuration profiles and passes shaper
configuration parameters to the driver.

Table 11: Shaper Vector Structure: sAPX_SHPR_VECT

Member Name Type Description

u1Valid UINT1 Indicates whether or not this vector’s contents are valid:

• APX_VALID

• APX_INVALID

Note: You should not set this field.
u1Port UINT1 WAN port to be shaped (0 to 3)
u1Class UINT1 WAN port-class to be shaped
u1SlowDnEn UINT1 Slow down enable used to provide fair shaping to

high-speed VCs
u1ThrshEn UINT1 Enables comparison of class queue-length and shaper

threshold-value
u1ThrshVal UINT1 Shaper threshold value (ignored if u1ThrshEn = 0)
u1MeasInt UINT1 Congestion level measurement-interval (4-bit

logarithmic value)
u1RedFact UINT1 Encoded slow-down rate-reduction factor (0-3)
u4RtRate UINT4 Real-time rate for shaper (9-bits)



S/UNI-APEX (PM7326) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 49
Document ID: PMC-991727, Issue 1

7.4 Other API Data Structures

Port ID Structure: sAPX_PORT_ID

The port ID structure identifies the port type (loop, WAN, or uP) and port number.

Table 12: Port ID Structure: sAPX_PORT_ID

Member Name Type Description

u2Type UINT2 Port type:

• APX_LOOP_PORT

• APX_WAN_PORT

• APX_UP_PORT

u2Num UINT2 Port number:

• Loop (0 to 2047)

• WAN (0 to 3)

• uP (0)

Class ID Structure: sAPX_CLASS_ID

The class ID structure identifies a port-class by port type (loop, WAN, or uP), port
number, and class number.

Table 13: Class ID Structure: sAPX_CLASS_ID

Member Name Type Description

u1Type UINT1 Port type:

• APX_LOOP_PORT

• APX_WAN_PORT

• APX_UP_PORT

u1Class UINT1 Class number (0 to 3)



S/UNI-APEX (PM7326) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 50
Document ID: PMC-991727, Issue 1

Member Name Type Description

u2Port UINT2 Port number:

• Loop (0 to 2047)

• WAN (0 to 3)

• uP (0)

Connection ID Structure: sAPX_CONN_ID

The connection ID structure identifies a connection and its destination port-class.

Table 14: Connection ID Structure: sAPX_CONN_ID

Member Name Type Description

u1Type UINT1 Destination port type:

• APX_LOOP_PORT

• APX_WAN_PORT

• APX_UP_PORT

u1Class UINT1 Destination class number (0 to 3)
u2Port UINT2 Destination port number:

• Loop (0 to 2047)

• WAN (0 to 3)

• uP (0)
u4ICI UINT4 ICI of the connection

Port Weight Structure: sAPX_PORT_WT

The port weight structure specifies the weight for a particular port.

Table 15: Port Weight Structure: sAPX_PORT_WT

Member Name Type Description

u2PortNum UINT2 Port number
u1PortWt UINT1 Port weight



S/UNI-APEX (PM7326) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 51
Document ID: PMC-991727, Issue 1

Port Sequence Structure: sAPX_PORT_SEQ

The port sequence structure specifies the sequence number for a particular port.

Table 16: Port Sequence Structure: sAPX_SEQ_WT

Member Name Type Description

u2PortNum UINT2 Port number
u1PortSeq UINT1 Port sequence number

Queue-Module Information Structure: sAPX_QE_INFO

The queue-module information structure retrieves information from the queue module’s
control block.

Table 17: Queue-Module Information Structure: sAPX_QE_INFO

Member Name Type Description

u2WdgStartIci UINT2 Start of ICI watchdog patrol range
u2WdgEndIci UINT2 End of ICI watchdog patrol range
u2PrtCfgCnt[] UINT2 Number of ports configured in loop, WAN, and uP

directions
u2ClCfgCnt[] UINT2 Number of classes configured in loop, WAN, and uP

directions
u4ConnCfgCnt[] UINT4 Number of connections configured in loop, WAN and

uP directions

Module Information Structure: sAPX_MODULE_INFO

The module information structure retrieves select GDD parameters.

Table 18: Module Information Structure: sAPX_MODULE_INFO

Member Name Type Description

u2NumDevs UINT2 Number of devices maintained by the driver (added)



S/UNI-APEX (PM7326) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 52
Document ID: PMC-991727, Issue 1

Member Name Type Description

u2NumDevsActive UINT2 Number of devices currently in APX_ACTIVE state
u4Mode UINT4 1: Interrupt mode

2: Poll mode
u4MemSz UINT4 Total memory allocated by the driver
u4ImgRd UINT4 1: Perform context reads from driver image

0: Perform context reads from physical context
memory

Device Information Structure: sAPX_DEV_INFO

The device information structure retrieves select DDB parameters.

Table 19: Device Information Structure: sAPX_DEV_INFO

Member Name Type Description

u4BaseAddr UINT4 Base address of device
u4DevState UINT4 Device state
usrCtxt UINT4 Pointer to device context information, which the

application maintains
u4CbDiagMd UINT4 Cell-buffer diagnostic mode
u4LpClStartAddr UINT4 Offset for the start of the loop-class context records in

the external-queue context memory
u4ShprStartAddr UINT4 Offset for the start of the shaper TxSlot context records

in the external-queue context memory
u4CellStartAddr UINT4 Offset for the start of the cell context records in the

external-queue context memory
u4MaxVCs UINT4 Maximum number of VCs
u4MaxCellBufs UINT4 Maximum number of cell buffers available for queuing
u1LpTxECIPreEn UINT1 Indicates if ECI prepend is expected on the loop

transmit interface
u1LpTxHecDis UINT1 Indicates if HEC/UDF field is expected on the loop

transmit interface
u1WanTxECIPreEn UINT1 Indicates if ECI prepend is expected on the WAN

transmit interface



S/UNI-APEX (PM7326) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 53
Document ID: PMC-991727, Issue 1

Member Name Type Description

u1WanTxHecDis UINT1 Indicates if HEC/UDF field is expected on the WAN
transmit interface

u2LpTxSwPreEn UINT2 Indicates if a switch tag prepend is expected on the
loop transmit interface

u2WanTxSwPreEn UINT2 Indicates if a switch tag prepend is expected on the
WAN transmit interface

SAR Transmit Context Structure: sAPX_TX_CTXT

The transmit context structure stores information about a transmit cell/frame for the SAR
transmit task.

Table 20: SAR Transmit Context Structure: sAPX_TX_CTXT

Member Name Type Description

Apex APEX Apex device handle
txType eAPX_SAR_TX_TYPE Transmit type (either cell or frame)
txInfo union (sAPX_CELL_INFO

or sAPX_FRM_INFO)
Stores either cell information or frame
information



S/UNI-APEX (PM7326) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 54
Document ID: PMC-991727, Issue 1

8 APPLICATION PROGRAMMING INTERFACE

This section provides a detailed description of each function that is a member of the
S/UNI-APEX driver API.

The API functions typically execute in the context of an application task.

Note: These functions are typically not re-entrant. Therefore, you should be careful not to
execute the same functions in multiple tasks running concurrently. The driver does
protect its data structures from simultaneous access by a single application task and all its
internal tasks (i.e., the DPR and SAR tasks).

8.1 Driver Initialization and Shutdown Functions

This section describes the functions that initialize and shutdown the driver.

Initializing the Driver: apexModuleInit

This function initializes the device driver. Initialization involves allocating memory for
the driver data structures (such as the GDD and DDB) and initializing these data
structures.

Prototype INT4 apexModuleInit(sAPX_MIV *psMiv)

Inputs psMiv: Module initialization vector. The driver copies this vector into
the GDD.

Outputs None

Returns APX_SUCCESS

APX_ERR_MODULE_ALREADY_INIT

APX_ERR_MEM_ALLOC

APX_ERR_SEMAPHORE

Shutting Down the Driver: apexModuleShutdown

This function shuts down the driver. Shutdown involves deleting all devices that the
driver controls and de-allocating the GDD.

Prototype void apexModuleShutdown(void)



S/UNI-APEX (PM7326) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 55
Document ID: PMC-991727, Issue 1

Inputs None

Outputs None

Returns None

8.2 Profile Management Functions

This section describes the functions that add, copy, and clear the following profiles:

• Initialization Profiles

• Port Profiles

• Class Profiles

• Connection Profiles

8.3 Initialization Profile Functions

This section describes the functions that add, copy, and clear initialization profiles.

Setting Initialization Profile Vectors: apexSetInitProfile

This function validates an initialization vector passed by the application and copies it into
the GDD. Your application can now initialize a device by simply passing the initialization
profile number. You should call this function only after apexModuleInit.

Prototype INT4 apexSetInitProfile(sAPX_INIT_VECT *psProfile, UINT4
*pu4ProfileNum)

Inputs psProfile: Profile that your application is setting

Outputs pu4ProfileNum: Profile number assigned by the driver

Returns APX_SUCCESS

APX_ERR_MODULE_NOT_INIT

APX_ERR_INVALID_INIT_VECTOR

APX_ERR_PROFILES_FULL

APX_ERR_MEM_ALLOC



S/UNI-APEX (PM7326) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 56
Document ID: PMC-991727, Issue 1

Getting Initialization Profiles: apexGetInitProfile

This function copies the contents of the specified initialization vector stored in the GDD
into the init-vector variable, which you provide. You should call this function only after
calling apexModuleInit.

Prototype INT4 apexGetInitProfile(UINT4 u4ProfileNum, sAPX_INIT_VECT
*psProfile)

Inputs u4ProfileNum: Profile number to display

Outputs psProfile: The driver copies the profile contents to this area, which
you provide

Returns APX_SUCCESS

APX_ERR_MODULE_NOT_INIT

APX_ERR_INVALID_PROFILE_NUM

Clearing Initialization Profiles: apexClrInitProfile

Given the profile number, this function clears an initialization vector profile,

Prototype INT4 apexClrInitProfile(UINT4 u4ProfileNum)

Inputs u4ProfileNum: Initialization vector profile-number

Outputs None

Returns APX_SUCCESS

APX_ERR_MODULE_NOT_INIT

APX_ERR_INVALID_PROFILE_NUM

8.4 Port Profile Functions

This section describes the functions that add, copy, and clear port profiles.



S/UNI-APEX (PM7326) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 57
Document ID: PMC-991727, Issue 1

Setting Port Profile Vectors: apexSetPortProfile

This function validates a port parameters vector, which you provide, and copies it into the
GDD. Your application can now initialize a port by simply passing the initialization
profile number. You should call this function only after apexModuleInit.

Prototype INT4 apexSetPortProfile(sAPX_PORT_VECT *psProfile, UINT4
*pu4ProfileNum)

Inputs psProfile: Profile that your application is setting

Outputs pu4ProfileNum: Profile number assigned by the driver

Returns APX_SUCCESS

APX_ERR_MODULE_NOT_INIT

APX_ERR_INVALID_PORT_VECTOR

APX_ERR_PROFILES_FULL

APX_ERR_MEM_ALLOC

Getting Port Profiles: apexGetPortProfile

This function copies the contents of the specified port-parameters vector to the variable
you provide.

Prototype INT4 apexGetPortProfile(UINT4 u4ProfileNum, sAPX_PORT_VECT
*psProfile)

Inputs u4ProfileNum: Profile number to display

Outputs psProfile: Profile contents are copied here

Returns APX_SUCCESS

APX_ERR_MODULE_NOT_INIT

APX_ERR_INVALID_PROFILE_NUM

Clearing Port Profiles: apexClrPortProfile

Given the profile number, this function clears a port vector profile.

Prototype INT4 apexClrPortProfile(UINT4 u4ProfileNum)



S/UNI-APEX (PM7326) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 58
Document ID: PMC-991727, Issue 1

Inputs u4ProfileNum: Port-vector profile number

Outputs None

Returns APX_SUCCESS

APX_ERR_MODULE_NOT_INIT

APX_ERR_INVALID_PROFILE_NUM

8.5 Class Profile Functions

This section describes the functions that add, copy, and clear class profiles.

Setting Class Profile Vectors: apexSetClassProfile

This function validates a class-parameters vector and copies it into the GDD. Your
application can now initialize a class by simply passing the initialization profile number.
You should call this function only after apexModuleInit.

Prototype INT4 apexSetClassProfile(sAPX_CLASS_VECT *psProfile, UINT4
*pu4ProfileNum)

Inputs psProfile: The profile that your application is adding

Outputs pu4ProfileNum: Profile number assigned by the driver

Returns APX_SUCCESS

APX_ERR_MODULE_NOT_INIT

APX_ERR_INVALID_CLASS_VECTOR

APX_ERR_PROFILES_FULL

APX_ERR_MEM_ALLOC

Getting Class Profiles: apexGetClassProfile

This function copies the contents of the specified class-parameters vector from the GDD
to the variable you provide.

Prototype INT4 apexGetClassProfile(UINT4 u4ProfileNum, sAPX_CLASS_VECT
*psProfile)



S/UNI-APEX (PM7326) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 59
Document ID: PMC-991727, Issue 1

Inputs u4ProfileNum: Profile number to display

Outputs psProfile: Profile contents are copied in here

Returns APX_SUCCESS

APX_ERR_MODULE_NOT_INIT

APX_ERR_INVALID_PROFILE_NUM

Clearing Class Profiles: apexClrClassProfile

Given the profile number, this function clears a class vector profile.

Prototype INT4 apexClrClassProfile(UINT4 u4ProfileNum)

Inputs u4ProfileNum: Class-vector profile number

Outputs None

Returns APX_SUCCESS

APX_ERR_MODULE_NOT_INIT

APX_ERR_INVALID_PROFILE_NUM

8.6 Connection Profile Functions

This section describes the functions that add, copy, and clear connection profiles.

Setting Connection Profile Vectors: apexSetConnProfile

This function validates a connection-parameters vector and copies it into the GDD. Your
application can now initialize a connection by simply passing the initialization profile
number. The driver should call this function only after calling apexModuleInit.

Prototype INT4 apexSetConnProfile(sAPX_CONN_VECT *psProfile, UINT4
*pu4ProfileNum)

Inputs psProfile: Profile that your application is setting



S/UNI-APEX (PM7326) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 60
Document ID: PMC-991727, Issue 1

Outputs pu4ProfileNum: Profile number assigned by the driver

Returns APX_SUCCESS

APX_ERR_MODULE_NOT_INIT

APX_ERR_INVALID_CONN_VECTOR

APX_ERR_PROFILES_FULL

APX_ERR_MEM_ALLOC

Getting Connection Profiles: apexGetConnProfile

This function copies the contents of the specified connection-parameters vector from the
GDD to the variable you provide.

Prototype INT4 apexGetConnProfile(UINT4 u4ProfileNum, sAPX_CONN_VECT
*psProfile)

Inputs u4ProfileNum: Profile number to display

Outputs psProfile: Profile contents are filled in here

Returns APX_SUCCESS

APX_ERR_MODULE_NOT_INIT

APX_ERR_INVALID_PROFILE_NUM

Clearing Connection Profiles: apexClrConnProfile

Given the profile number, this function clears a connection vector profile.

Prototype INT4 apexClrConnProfile(UINT4 u4ProfileNum)

Inputs u4ProfileNum: Connection vector profile number

Outputs None

Returns APX_SUCCESS

APX_ERR_MODULE_NOT_INIT

APX_ERR_INVALID_PROFILE_NUM



S/UNI-APEX (PM7326) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 61
Document ID: PMC-991727, Issue 1

8.7 Device Addition and Removal Functions

This section describes the functions needed to add and removal devices.

Adding Devices: apexAdd

This function detects the new device in the hardware, assigns the device a device data
block (DDB). Then it stores context information, which you maintain, for the device
being added. Finally, it returns a device handle back to the application. You should use
the device handle to identify the device on which the driver will perform the operation.
Your application should call this function only after it calls apexModuleInit.

Prototype INT4 apexAdd(APX_USR_CTXT usrCtxt, APEX *pApex)

Inputs usrCtxt: Pointer to device context information, which the application
maintains

Outputs pApex: Pointer to the S/UNI-APEX device handle that contains
context information maintained by the driver.

Returns APX_SUCCESS

APX_ERR_MODULE_NOT_INIT

APX_ERR_DEVS_FULL

APX_ERR_DEV_NOT_DETECTED

APX_ERR_DEV_ALREADY_ADDED

APX_ERR_INVALID_TYPE_ID

APX_ERR_DLL_PHASE_LOCK

Side Effects The device state changes to APX_PRESENT. The driver applies a
software reset to the device.

Deleting Devices: apexDelete

This function removes the specified device from the list of devices that the driver
controls. Deleting a device involves clearing the DDB for that device.

Prototype INT4 apexDelete(APEX apex)

Inputs apex: Device handle



S/UNI-APEX (PM7326) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 62
Document ID: PMC-991727, Issue 1

Outputs None

Returns APX_SUCCESS

APX_ERR_INVALID_DEV

APX_ERR_INVALID_STATE

Valid States APX_PRESENT

Side Effects The device handle, apex, is no longer valid.

8.8 Device Register Access Functions

Reading From Device Registers: apexReadReg

This function can be used to read the various registers of the APEX device.

Prototype INT4 apexReadReg(APEX apex, UINT4 u4RegOff, UINT4 *pu4Val)

Inputs apex: Device handle

u4RegOff: Register’s offset from the base address
      (for example, 0x10, 0x14 etc)

Outputs pu4Val: Contents of the register

Returns APX_SUCCESS

APX_ERR_INVALID_DEV

APX_ERR_INVALID_REG

Side Effects Will clear clear-on-read registers (e.g., interrupt status registers)

Writing To Device Registers: apexWriteReg

This function is used to write to the various registers of the APEX device.

Prototype INT4 apexWriteReg(APEX apex, UINT4 u4RegOff, UINT4 u4Val)



S/UNI-APEX (PM7326) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 63
Document ID: PMC-991727, Issue 1

Inputs apex: Device handle

u4RegOff: Register’s offset from the base address
                   (for example, 0x10, 0x14 etc)

u4Val: Data to be written to the register

Outputs None

Returns APX_SUCCESS

APX_ERR_INVALID_DEV

APX_ERR_INVALID_REG

Side Effects Writes to device registers after device initialization will overwrite
initialization data and may cause incorrect operation of the device. Use
with caution!

8.9 Device Diagnostic Functions

This section describes the functions that perform the following device tests:

Testing Register Access: apexRegisterTest

This function tests the microprocessor’s access to the device registers by writing values to
the registers and reading them back.

Prototype INT4 apexRegisterTest(APEX apex)

Inputs apex: Device handle

Outputs None

Returns APX_SUCCESS

APX_ERR_INVALID_DEV

APX_FAILURE

Side Effects The device is reset and put in the APX_PRESENT state



S/UNI-APEX (PM7326) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 64
Document ID: PMC-991727, Issue 1

Testing Access to External Queue Context-Memory:
apexExtQCtxtTest

This function tests the microprocessor’s access to the external queue context-memory
aperture.

Prototype INT4 apexExtQCtxtTest(APEX apex, UINT1 u1TestType, UINT4
u4QuadStart, UINT4 u4QuadNum, sAPX_DATA34 *psPattern)

Inputs apex: Device handle

u1TestType (ZBT SSRAM tests):

• 0x00: WrRd.. pattern test

• 0x01: WrWr..RdRd.. pattern test

• 0x02: Address aliasing test

u1TestType (late write SSRAM tests):

• 0x10: WrRd.. pattern test

• 0x11: WrWr..RdRd.. pattern test

• 0x12: Address aliasing test

u4QuadStart: Starting quad-word for test

u4QuadNum: Number of quad-words to test

psPattern: Test pattern (only applicable for pattern tests)

Outputs None

Returns APX_SUCCESS

APX_ERR_INVALID_DEV

APX_ERR_INVALID_TEST_PARAM

APX_FAILURE

APX_ERR_POLL_TIMEOUT

Side Effects The device is reset and put in the APX_PRESENT state

Testing Access to Internal Queue Context-Memory: apexIntQCtxtTest

This function tests the microprocessor’s access to the internal queue context-memory
aperture.

Prototype INT4 apexIntQCtxtTest(APEX apex, UINT1 u1TestType, UINT4
u4QuadStart, UINT4 u4QuadNum, sAPX_DATA34 *psPattern)



S/UNI-APEX (PM7326) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 65
Document ID: PMC-991727, Issue 1

Inputs apex: Device handle

u1TestType:

• 0: WrRd.. pattern test

• 1: WrWr..RdRd.. pattern test

• 2: address aliasing test

u4QuadStart: Starting quad-word for test (0..1559)

u4QuadNum: Number of quad-words to test (1..1559)

psPattern: Test pattern (only applicable for pattern tests). If test
includes quad-words in the range 512-1023, then test pattern words
should not be more than 16-bits wide

Outputs None

Returns APX_SUCCESS

APX_ERR_INVALID_DEV

APX_ERR_INVALID_TEST_PARAM

APX_ERR_INVALID_ADDR

APX_ERR_POLL_TIMEOUT

APX_FAILURE

Side Effects The device is reset and put in the APX_PRESENT state

Testing Access to LPS Context-Memory: apexLpsCtxtTest

This function tests the microprocessor’s access to the LPS context-memory aperture.

Prototype INT4 apexLpsCtxtTest(APEX apex, UINT1 u1Ctxt, UINT1
u1TestType, UINT4 u4Pattern)



S/UNI-APEX (PM7326) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 66
Document ID: PMC-991727, Issue 1

Inputs apex: Device handle

u1Ctxt:

• 0: LPS port poll-sequence context

• 1: LPS port weight context

• 2: LPS transmit-class status context

u1TestType:

• 0: WrRd.. pattern test

• 1: WrWr..RdRd.. pattern test

u4Pattern: Test pattern

Outputs None

Returns APX_SUCCESS

APX_ERR_INVALID_DEV

APX_ERR_INVALID_TEST_PARAM

APX_ERR_POLL_TIMEOUT

APX_FAILURE

Side Effects The device is reset and put in the APX_PRESENT state

Testing Access to WPS Context-Memory: apexWpsCtxtTest

This function tests the microprocessor’s access to the WPS context-memory aperture.

Prototype INT4 apexWpsCtxtTest(APEX apex, UINT4 u4Pattern)

Inputs apex: Device handle

u4Pattern: Test pattern

Outputs None



S/UNI-APEX (PM7326) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 67
Document ID: PMC-991727, Issue 1

Returns APX_SUCCESS

APX_ERR_INVALID_DEV

APX_ERR_INVALID_TEST_PARAM

APX_ERR_POLL_TIMEOUT

APX_FAILURE

Side Effects The device is reset and put in the APX_PRESENT state

Testing Access to the External SDRAM Cell-Buffers: apexCellBufTest

This function tests the microprocessor’s access to the device’s associated cell-buffer
SDRAM. It does this by writing test-cell patterns to the SDRAM and reading them back.

Prototype INT4 apexCellBufTest (APEX apex, UINT4 u4CellStartAddr, UINT4
u4NumCells, UINT1 u1TestType, UINT4 u4Pattern)

Inputs apex: Device handle

u4CellStartAddr: Address in SDRAM to start the test from

u4NumCells: Number of cells

u1TestType:

• 0: WrWr..RdRd.. pattern test

• 1: Address aliasing test

u4Pattern: Test pattern (only applicable for pattern tests)

Outputs None

Returns APX_SUCCESS

APX_ERR_INVALID_DEV

APX_FAILURE

APX_INVALID_TEST_PARAM

APX_ERR_POLL_TIMEOUT

Valid States APX_INIT

APX_ACTIVE

Side Effects The device is reset and put into the APX_PRESENT state



S/UNI-APEX (PM7326) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 68
Document ID: PMC-991727, Issue 1

Testing the Context Memory Image: apexCtxtMemCheck

This function tests the context memory image maintained by the driver. The driver
compares the context memory image with the contents of the actual context memory.

Prototype INT4 apexCtxtMemCheck(APEX apex)

Inputs apex: Device handle

Outputs None

Returns APX_SUCCESS

APX_ERR_INVALID_DEV

APX_ERR_INVALID_STATE

APX_ERR_PORT_CTXT_CHK

APX_ERR_CLASS_CTXT_CHK

APX_ERR_CONN_CTXT_CHK

Valid States APX_INIT

APX_ACTIVE

Side Effects Can slow down device operations due to bottleneck at the memory
port interface

8.10 Device Reset and Initialization Functions

This section describes the functions needed to reset and initialize S/UNI-APEX devices.

Resetting Devices: apexReset

This function applies a software reset to the S/UNI-APEX device. It also resets all the
DDB contents (except for the initialization vector, which is not modified). Your
application should call this function before initializing the device with a new initialization
vector.

Prototype INT4 apexReset(APEX apex)

Inputs apex: Device handle



S/UNI-APEX (PM7326) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 69
Document ID: PMC-991727, Issue 1

Outputs None

Returns APX_SUCCESS

APX_ERR_INVALID_DEV

Side Effects The device state changes to APX_PRESENT. Therefore, your
application must initialize the device after a reset.

Initializing Devices: apexInit

This function initializes the device based on an initialization vector passed by the
application. This driver validates the vector and copies it into the DDB. Then the driver
configures the device registers according to the contents of the initialization vector.
Alternatively, you can also use an initialization vector profile number. In this case, driver
copies the profile contents (stored in GDD) into the DDB. The driver has now finished
initializing the device as per the profile contents.

Note: This function may modify the mask registers in the initialization vector supplied by
your application

Prototype INT4 apexInit(APEX apex, sAPX_INIT_VECT *psInitVect, UINT4
u4ProfileNum)

Inputs apex: Device handle

psInitVect: The initialization vector that the driver uses to program
the device registers. You should set this pointer to NULL if you are
using an initialization vector profile.

u4ProfileNum: Profile number the driver will use to get the
initialization vector from the GDD. You should set this variable to
0xffffffff if you are directly passing an initialization vector.

Outputs None

Returns APX_SUCCESS

APX_ERR_INVALID_DEV

APX_ERR_INVALID_STATE

APX_ERR_INVALID_INIT_VECTOR

APX_ERR_INVALID_PROFILE_NUM

APX_ERR_PROFILE_VECTOR_BOTH_VALID



S/UNI-APEX (PM7326) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 70
Document ID: PMC-991727, Issue 1

Valid States APX_PRESENT

Side Effects The device state changes to APX_INIT

8.11 Device Activation and Deactivation Functions

This section describes the functions needed to activate and deactivate S/UNI-APEX
devices.

Activating Devices: apexActivate

This function activates the S/UNI-APEX device by preparing it for normal operation.
Activation involves installing and enabling device interrupts; enabling the queue engine’s
external interfaces; and enabling the transmission and reception of cells and frames from
the microprocessor port.

If this is the first device that the driver activates, the DPR task and the SAR tasks, along
with the associated message queues, are created.

Prototype INT4 apexActivate(APEX apex)

Inputs apex: Device handle

Outputs None

Returns APX_SUCCESS

APX_ERR_INVALID_DEV

APX_ERR_INVALID_STATE

APX_ERR_SAR_INSTALL

Valid States APX_INIT

Side Effects The device state changes to APX_ACTIVE

Deactivating Devices: apexDeactivate

This function de-activates the S/UNI-APEX device and removes it from normal
operation. Deactivation involves removing device interrupts; disabling the queue engine’s
external interfaces; and disabling transmission and reception of cells and frames from the
microprocessor port.



S/UNI-APEX (PM7326) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 71
Document ID: PMC-991727, Issue 1

Prototype INT4 apexDeactivate(APEX apex)

Inputs apex: Device handle

Outputs None

Returns APX_SUCCESS

APX_ERR_INVALID_DEV

APX_ERR_INVALID_STATE

APX_ERR_SAR_REMOVE

Valid States APX_ACTIVE

Side Effects The device state changes to APX_INIT. If this is the last device that
the driver is deactivating, then the driver also deletes the DPR task, the
SAR-component transmit and receive tasks, and their associated
message queues.

8.12 Queue Engine Functions

This section describes the queue engine functions that include:

• Setup, disable, re-enable, and teardown of ports, classes, and connections

• Updating the congestion thresholds and scheduling parameters for direction, ports,
classes and connections

• Setup and teardown of shapers

• Watchdog patrol operations

8.13 Direction Functions

This section describes how to update the congestion thresholds for the Loop and WAN
directions.

Updating Direction Thresholds: apexSetDirCongThrsh

This function updates the congestion thresholds for the Loop and WAN directions



S/UNI-APEX (PM7326) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 72
Document ID: PMC-991727, Issue 1

Prototype INT4 apexSetDirCongThrsh(APEX apex, UINT1 u1Dir, UINT1
u1Clp0Thrsh, UINT1 u1Clp1Thrsh, UINT1 u1MaxThrsh)

Inputs apex: Device handle

u1Dir: Direction for setting thresholds (Loop or WAN direction)

u1Clp0Thrsh: Value for CLP0 threshold

u1Clp1Thrsh: Value for CLP1 threshold

u1MaxThrsh: Value for max threshold

Outputs None

Returns APX_SUCCESS

APX_ERR_INVALID_DEV

APX_ERR_INVALID_STATE

APX_ERR_INVALID_DIR

APX_ERR_INVALID_DIR_THRSH

Valid States APX_INIT

APX_ACTIVE

8.14 Port Functions

This section describes how to set up, disable, re-enable, tear down ports and update the
port thresholds and class scheduling parameters for a port, which has already been set up.

Setting Up Ports: apexPortSetup

This function configures and enables a port based on a port-parameters vector passed by
the application. Alternatively, the application can pass the profile number of a port-vector
already registered with the driver.

Prototype INT4 apexPortSetup(APEX apex, sAPX_PORT_ID *psPortId,
sAPX_PORT_VECT *psPortVect, UINT4 u4ProfileNum)



S/UNI-APEX (PM7326) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 73
Document ID: PMC-991727, Issue 1

Inputs apex: Device handle

psPortId: Port to be configured

psPortVect: Port vector that the driver uses to program the port
context records. You should set this pointer to NULL if you are using a
port vector profile.

u4ProfileNum: Profile number the driver will use to get the port
vector from the GDD. You should set this variable to 0xffffffff if you
are instead directly passing a port vector.

Outputs None

Returns APX_SUCCESS

APX_ERR_INVALID_DEV

APX_ERR_INVALID_STATE

APX_ERR_INVALID_PORT_ID

APX_ERR_PORT_NOT_FREE

APX_ERR_PROFILE_VECTOR_BOTH_VALID

APX_ERR_INVALID_PORT_VECTOR

APX_ERR_INVALID_PROFILE_NUM

APX_ERR_POLL_TIMEOUT

Valid States APX_INIT

APX_ACTIVE

Disabling Ports: apexPortDisable

This function disables an active port. If the port is already disabled, the function returns
without doing anything.

Prototype INT4 apexPortDisable(APEX apex, sAPX_PORT_ID *psPortId)

Inputs apex: Device handle

psPortId: Port to be disabled

Outputs None



S/UNI-APEX (PM7326) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 74
Document ID: PMC-991727, Issue 1

Returns APX_SUCCESS

APX_ERR_INVALID_DEV

APX_ERR_INVALID_STATE

APX_ERR_INVALID_PORT_ID

APX_ERR_PORT_NOT_CFG

APX_ERR_POLL_TIMEOUT

Valid States APX_ACTIVE

Side Effects Disables all associated classes and connections

Re-Enabling Ports: apexPortEnable

This function enables a disabled port. If the port is already enabled, the function returns
without doing anything.

Prototype INT4 apexPortEnable(APEX apex, sAPX_PORT_ID *psPortId)

Inputs apex: Device handle

psPortId: Port to be enabled

Outputs None

Returns APX_SUCCESS

APX_ERR_INVALID_DEV

APX_ERR_INVALID_STATE

APX_ERR_INVALID_PORT_ID

APX_ERR_PORT_NOT_CFG

APX_ERR_POLL_TIMEOUT

Valid States APX_ACTIVE

Side Effects Enables all associated classes and connections

Tearing Down Ports: apexPortTeardown

This function tears down a port and all additional classes and connections associated with
the port.



S/UNI-APEX (PM7326) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 75
Document ID: PMC-991727, Issue 1

Prototype INT4 apexPortTeardown(APEX apex, sAPX_PORT_ID *psPortId)

Inputs apex: Device handle

psPortId: Port to be torn down

Outputs None

Returns APX_SUCCESS

APX_ERR_INVALID_DEV

APX_ERR_INVALID_STATE

APX_ERR_INVALID_PORT_ID

APX_ERR_PORT_NOT_CFG

APX_ERR_POLL_TIMEOUT

Valid States APX_ACTIVE

Side Effects Tears down associated classes and connections

Updating Port Congestion Thresholds: apexSetPrtCongThrsh

This function updates the congestion thresholds for a port, which has already been set up.

Prototype INT4 apexSetPrtCongThrsh(APEX apex, sAPX_PORT_ID *psPortId,
UINT1 u1Clp0Thrsh, UINT1 u1Clp1Thrsh, UINT1 u1MaxThrsh)

Inputs apex: Device handle
psPortId: Port id

u1Clp0Thrsh: Value for CLP0 threshold

u1Clp0Thrsh: Value for CLP1 threshold

u1MaxThrsh: Value for max threshold

Outputs None



S/UNI-APEX (PM7326) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 76
Document ID: PMC-991727, Issue 1

Returns APX_SUCCESS

APX_ERR_INVALID_DEV

APX_ERR_INVALID_STATE

APX_ERR_INVALID_PORT_ID

APX_ERR_PORT_NOT_CFG

APX_ERR_INVALID_PORT_THRSH

Valid States APX_INIT

APX_ACTIVE

Updating Class Scheduling Parameters: apexSetClSchd

This function updates the class scheduling parameters for a port, which has already been
setup.

Prototype INT4 apexSetClSchd(APEX apex, sAPX_PORT_ID *psPortId,
sAPX_CS_VECT *psCsVect)

Inputs apex: Device handle
psPortId: Port id

psCsVect: Pointer to structure containing class scheduling parameters

Outputs None

Returns APX_SUCCESS

APX_ERR_INVALID_DEV

APX_ERR_INVALID_STATE

APX_ERR_INVALID_PORT_ID

APX_ERR_PORT_NOT_CFG

APX_ERR_INVALID_CL_SCHD

Valid States APX_INIT

APX_ACTIVE



S/UNI-APEX (PM7326) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 77
Document ID: PMC-991727, Issue 1

8.15 Class Functions

This section describes how to set up, disable, re-enable, tear down classes and updating
class congestion thresholds for a class which has already been set up.

Setting Up Classes: apexClassSetup

This function configures and enables a class that is based on a class-parameters-vector
passed by the application. Alternatively, the application can pass the profile number of a
class-vector already registered with the driver. Note: The driver will not allow a class
setup operation until your application enables the associated port.

Prototype INT4 apexClassSetup(APEX apex, sAPX_CLASS_ID *psClassId,
sAPX_CLASS_VECT *psClassVect, UINT4 u4ProfileNum)

Inputs apex: Device handle

psClassId: Port class to be configured

psClassVect: Class vector that the driver uses to program the class
context record. You should set this pointer to NULL if you are using a
class vector profile.

u4ProfileNum: Profile number the driver will use to get the port
vector from the GDD. You should set this variable to 0xffffffff if you
are directly passing a port vector.

Outputs None

Returns APX_SUCCESS

APX_ERR_INVALID_DEV

APX_ERR_INVALID_STATE

APX_ERR_INVALID_CLASS_ID

APX_ERR_PORT_NOT_ENABLED

APX_ERR_CLASS_NOT_FREE

APX_ERR_PROFILE_VECTOR_BOTH_VALID

APX_ERR_INVALID_CLASS_VECTOR

APX_ERR_INVALID_PROFILE_NUM

APX_ERR_POLL_TIMEOUT

Valid States APX_INIT

APX_ACTIVE



S/UNI-APEX (PM7326) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 78
Document ID: PMC-991727, Issue 1

Disabling Classes: apexClassDisable

This function disables a configured class.

Prototype INT4 apexClassDisable(APEX apex, sAPX_CLASS_ID *psClassId)

Inputs apex: Device handle

psClassId: Class to be disabled

Outputs None

Returns APX_SUCCESS

APX_ERR_INVALID_DEV

APX_ERR_INVALID_STATE

APX_ERR_INVALID_CLASS_ID

APX_ERR_CLASS_NOT_CFG

APX_ERR_POLL_TIMEOUT

Valid States APX_ACTIVE

Side Effects Disables all associated connections

Re-Enabling Classes: apexClassEnable

This function enables a disabled class. If the class is enabled, the function returns without
doing anything. Note: The driver will not allow a class-enable operation unless your
application has enabled the associated port.

Prototype INT4 apexClassEnable(APEX apex, sAPX_CLASS_ID *psClassId)

Inputs apex: Device handle

psClassId: Class to be enabled

Outputs None



S/UNI-APEX (PM7326) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 79
Document ID: PMC-991727, Issue 1

Returns APX_SUCCESS

APX_ERR_INVALID_DEV

APX_ERR_INVALID_STATE

APX_ERR_INVALID_CLASS_ID

APX_ERR_PORT_NOT_ENABLED

APX_ERR_CLASS_NOT_CFG

APX_ERR_POLL_TIMEOUT

Valid States APX_ACTIVE

Side Effects Enables all associated connections

Tearing Down Classes: apexClassTeardown

This function first tears down all connections associated with this class, thereafter tearing
down the class itself.

Prototype INT4 apexClassTeardown(APEX apex, sAPX_CLASS_ID *psClassId)

Inputs apex: Device handle

psClassId: Class to be torn down

Outputs None

Returns APX_SUCCESS

APX_ERR_INVALID_DEV

APX_ERR_INVALID_STATE

APX_ERR_INVALID_CLASS_ID

APX_ERR_CLASS_NOT_CFG

APX_ERR_POLL_TIMEOUT

Valid States APX_ACTIVE

Side Effects Tears down all associated connections



S/UNI-APEX (PM7326) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 80
Document ID: PMC-991727, Issue 1

Updating Class Congestion Thresholds: apexSetClCongThrsh

This function updates the congestion thresholds for a class, which has already been set
up.

Prototype INT4 apexSetClCongThrsh(APEX apex, sAPX_CLASS_ID *psClassId,
UINT1 u1Clp0Thrsh, UINT1 u1Clp1Thrsh, UINT1 u1MaxThrsh)

Inputs apex: Device handle
psClassId: Class id

u1Clp0Thrsh: Value for CLP0 threshold

u1Clp0Thrsh: Value for CLP1 threshold

u1MaxThrsh: Value for max threshold

Outputs None

Returns APX_SUCCESS

APX_ERR_INVALID_DEV

APX_ERR_INVALID_STATE

APX_ERR_INVALID_CLASS_ID

APX_ERR_CLASS_NOT_CFG

APX_ERR_INVALID_CLASS_THRSH

Valid States APX_INIT

APX_ACTIVE

8.16 Shaper Functions

This section describes the functions that set up and tear down shapers.

Setting Up Shapers: apexShprSetup

This function configures and enables a shaper based on a shaper parameters-vector
passed by the application.

Note: Your application should configure shapers before activating a device and before
configuring the associated port-classes



S/UNI-APEX (PM7326) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 81
Document ID: PMC-991727, Issue 1

Prototype INT4 apexShprSetup(APEX apex, UINT1 u1ShprId, sAPX_SHPR_VECT
*psShprVect)

Inputs apex: Device handle

u1ShprId: Shaper to be configured (0-3)

psShprVect: Shaper parameters vector the driver uses to program the
port context records

Outputs None

Returns APX_SUCCESS

APX_ERR_INVALID_DEV

APX_ERR_INVALID_STATE

APX_ERR_INVALID_SHPR_ID

APX_ERR_SHPR_NOT_FREE

APX_ERR_INVALID_SHPR_VECTOR

APX_ERR_POLL_TIMEOUT

Valid States APX_INIT

Tearing Down Shapers: apexShprTeardown

This function tears down a shaper. Shapers can only be torn down if the queue engine is
disabled (the device is de-activated). Note: A shaper should be torn down only after its
associated port-class is torn down.

Prototype INT4 apexShprTeardown(APEX apex, UINT1 u1ShprId)

Inputs apex: Device handle

u1ShprId: Shaper to be torn down (0-3)

Outputs None



S/UNI-APEX (PM7326) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 82
Document ID: PMC-991727, Issue 1

Returns APX_SUCCESS

APX_ERR_INVALID_DEV

APX_ERR_INVALID_STATE

APX_ERR_INVALID_SHPR_ID

APX_ERR_SHPR_NOT_FREE

APX_ERR_POLL_TIMEOUT

Valid States APX_INIT

8.17 Connection Functions

This section describes how to set up, disable, re-enable, and tear down connections. It
also describes how to update the congestion thresholds,  WFQ weights and shape single
rate parameters for connections that have already been set up.

Setting Up Connections: apexConnSetup

This function configures and enables a connection based on a connection-parameters
vector passed by the application. Alternatively, the application can pass the profile
number of a connection-vector already registered with the driver. Note: The driver will
not allow a connection setup operation until your application has enabled the associated
port and class. The connection vector must contain shape fair queue (SFQ) parameters if
the class has been configured to be shaped.

Prototype INT4 apexConnSetup(APEX apex, sAPX_CONN_ID *psConnId,
sAPX_CONN_VECT *psConnVect, UINT4 u4ProfileNum)

Inputs apex: Device handle

psConnId: Connection to be configured

psConnVect: Connection vector that the driver uses to program the
VC context records. You should set this pointer to NULL if you are
using a connection vector profile.

u4ProfileNum: The driver uses this profile number to get the
connection vector from the GDD. You should set this variable to
0xffffffff if you are directly passing a connection vector.

Outputs None



S/UNI-APEX (PM7326) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 83
Document ID: PMC-991727, Issue 1

Returns APX_SUCCESS

APX_ERR_INVALID_DEV

APX_ERR_INVALID_STATE

APX_ERR_INVALID_CONN_ID

APX_ERR_INVALID_CONN_VECTOR

APX_ERR_INVALID_PROFILE_NUM

APX_ERR_PROFILE_VECTOR_BOTH_VALID

APX_ERR_PORT_NOT_ENABLED

APX_ERR_CLASS_NOT_ENABLED

APX_ERR_CONN_NOT_FREE

APX_ERR_POLL_TIMEOUT

Valid States APX_INIT

APX_ACTIVE

Disabling Connections: apexConnDisable

This function disables a configured connection.

Prototype INT4 apexConnDisable(APEX apex, UINT4 u4ICI)

Inputs apex: Device handle

u4ICI: ICI of the connection to be disabled

Outputs None

Returns APX_SUCCESS

APX_ERR_INVALID_DEV

APX_ERR_INVALID_STATE

APX_ERR_INVALID_ICI

APX_ERR_CONN_NOT_CFG

APX_ERR_POLL_TIMEOUT

Valid States APX_ACTIVE



S/UNI-APEX (PM7326) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 84
Document ID: PMC-991727, Issue 1

Re-Enabling Connections: apexConnEnable

This function enables a disabled connection. If the connection is already enabled, the
function returns without doing anything.

Note: The driver will not allow a connection enable operation unless your application has
enabled the associated port and class.

Prototype INT4 apexConnEnable(APEX apex, UINT4 u4ICI)

Inputs apex: Device handle

u4ICI: ICI of the connection to be enabled

Outputs None

Returns APX_SUCCESS

APX_ERR_INVALID_DEV

APX_ERR_INVALID_STATE

APX_ERR_PORT_NOT_ENABLED

APX_ERR_CLASS_NOT_ENABLED

APX_ERR_CONN_NOT_CFG

APX_ERR_INVALID_ICI

APX_ERR_POLL_TIMEOUT

Valid States APX_ACTIVE

Tearing Down Connections: apexConnTeardown

This function tears down a configured connection. If the connection is currently active,
the driver first disables it, and then tears it down.

Prototype INT4 apexConnTeardown(APEX apex, UINT4 u4ICI)

Inputs apex: Device handle

u4ICI: ICI of the connection to be disabled

Outputs None



S/UNI-APEX (PM7326) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 85
Document ID: PMC-991727, Issue 1

Returns APX_SUCCESS

APX_ERR_INVALID_DEV

APX_ERR_INVALID_STATE

APX_ERR_INVALID_ICI

APX_ERR_CONN_NOT_CFG

APX_ERR_POLL_TIMEOUT

Valid States APX_ACTIVE

Updating Connection Congestion Thresholds:
apexSetConnCongThrsh

This function updates the congestion thresholds for an already set-up connection.

Prototype INT4 apexSetConnCongThrsh(APEX apex, UINT4 u4ICI,
UINT1 u1Clp0Thrsh, UINT1 u1Clp1Thrsh, UINT1 u1MaxThrsh)

Inputs apex: Device handle
u4Ici: Connection id

u1Clp0Thrsh: Value for CLP0 threshold

u1Clp0Thrsh: Value for CLP1 threshold

u1MaxThrsh: Value for max threshold

Outputs None

Returns APX_SUCCESS

APX_ERR_INVALID_DEV

APX_ERR_INVALID_STATE

APX_ERR_INVALID_ICI

APX_ERR_CONN_NOT_CFG

APX_ERR_INVALID_CONN_THRSH

Valid States APX_INIT

APX_ACTIVE

Updating Class Queuing Weight: apexSetConnWfqWt

This function updates the class queuing weight for a connection with queue type WFQ.



S/UNI-APEX (PM7326) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 86
Document ID: PMC-991727, Issue 1

Prototype INT4 apexSetConnWfqWt(APEX apex, UINT4 u4ICI, UINT1 u1Wt)

Inputs apex: Device handle
u4Ici: Connection id

u1Wt: Class queue weight for WFQ connection

Outputs None

Returns APX_SUCCESS

APX_ERR_INVALID_DEV

APX_ERR_INVALID_STATE

APX_ERR_INVALID_ICI

APX_ERR_CONN_NOT_CFG

APX_ERR_INVALID_CONN_TYPE

APX_ERR_INVALID_WFQ_WT

Valid States APX_INIT

APX_ACTIVE

Updating Shaped Single Rate Parameters: apexSetConnShpSnglRt

This function updates the shape single rate parameters for a shaped connection.

Prototype INT4 apexSetConnShpSnglRt(APEX apex, UINT4 u4ICI,
UINT1 u1ShpPrescale, UINT2 u2ShpLateBits, UINT2 u2ShpCdvt,
UINT2 u2ShpIncr)

Inputs apex: Device handle
u4ICI: Connection  id
u1ShpPrescale: Determines resolution of shape increment
u2ShpLateBits: Number of bits required to represent
                              ShpTxSlotLate field
u2ShpCdvt: Cell delay variance tolerance
u2ShpIncr: Shape increment

Outputs None



S/UNI-APEX (PM7326) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 87
Document ID: PMC-991727, Issue 1

Returns APX_SUCCESS

APX_ERR_INVALID_DEV

APX_ERR_INVALID_STATE

APX_ERR_INVALID_ICI

APX_ERR_CONN_NOT_CFG

APX_ERR_INVALID_CONN_TYPE

APX_ERR_INVALID_SHP_PARAM

Valid States APX_INIT

APX_ACTIVE

8.18 Watchdog Patrol Functions

Setting Watchdog Patrol Parameters: apexSetWdgPatrolRng

This function sets the ICI watchdog patrol range.

Prototype INT4 apexSetWdgPatrolRng(APEX apex, UINT2 u2StartICI,
UINT2 u2EndICI)

Inputs apex: Device handle

u2StartICI: First ICI in watchdog patrol range

u2EndICI: Last ICI in watchdog patrol range

Outputs None.

Returns APX_SUCCESS

APX_ERR_INVALID_DEV

APX_ERR_INVALID_STATE

APX_ERR_INVALID_RANGE

APX_ERR_INVALID_ICI

APX_ERR_WDG_PTRL_BUSY

Valid States APX_INIT

APX_ACTIVE



S/UNI-APEX (PM7326) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 88
Document ID: PMC-991727, Issue 1

Getting Watchdog Patrol Parameters: apexGetWdgPatrolRng

This function gets the current settings for the ICI watchdog patrol range.

Prototype INT4 apexGetWdgPatrolRng(APEX apex, UINT2 *pu2StartICI,
UINT2 *pu2EndICI)

Inputs apex: Device handle

Outputs pu2StartICI: Pointer to first ICI in watchdog patrol range

pu2EndICI: Pointer to last ICI in watchdog patrol range

Returns APX_SUCCESS

APX_ERR_INVALID_DEV

APX_ERR_INVALID_STATE

Valid States APX_INIT

APX_ACTIVE

Initiating a Watchdog Patrol: apexWatchdogPatrol

This function can be used to invoke the APEX watchdog macro that checks a specified
range of ICIs (frame continuous queuing VCs) for frame re-assembly timeouts. If at least
one VC has timed out, the APEX generates an interrupt and stores the last found ICI in
the miscellaneous context record.

Prototype INT4 apexWatchdogPatrol(APEX apex)

Inputs apex: Device handle

Outputs None

Returns APX_SUCCESS

APX_ERR_INVALID_DEV

APX_ERR_INVALID_STATE

APX_ERR_POLL_TIMEOUT

APX_ERR_WDG_PTRL_BUSY



S/UNI-APEX (PM7326) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 89
Document ID: PMC-991727, Issue 1

Valid States APX_ACTIVE

8.19 Segmentation and Re-assembly Assist Functions

This section describes the segmentation and re-assembly (SAR) assist functions.

Transmitting Cells: apexTxCell

Your application can use this function to transmit cells from the device’s SAR interface.
This function encapsulates the cell information (header, payload, and so on) in a message
structure and sends it to the driver’s SAR transmit task. The SAR transmit task transmits
the cell and sends a transmit-cell indication, indTxCell, back to your application.

Prototype INT4 apexTxCell(APEX apex, UINT4 u4ICI, sAPX_CELL_HDR *psHdr,
UINT1 *pu1Pyld, UINT1 u1CrcFlg)

Inputs apex: Device handle

u4ICI: ICI of the connection

psHdr: Pointer to the cell header structure that contains the header
bytes.

pu1Pyld: Pointer to first byte of cell payload (48 contiguous bytes)

u1CrcFlg: A control flag, which can be:

• 0: No CRC protection required

• 1: Overwrite end-of-cell with CRC-10

Outputs None

Returns APX_SUCCESS

APX_ERR_INVALID_DEV

APX_ERR_INVALID_STATE

APX_ERR_SAR_TX_MSG

APX_ERR_INVALID_ICI

APX_ERR_CONN_NOT_CFG

Valid States APX_ACTIVE



S/UNI-APEX (PM7326) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 90
Document ID: PMC-991727, Issue 1

Transmitting AAL5 Frames: apexTxFrm

Your application can use this function to transmit AAL5 frames using the device’s SAR
interface. This function forms an AAL5 PDU from the frames you provide (padding,
CRC, and AAL5 trailer) for transmission on a specified connection. The AAL5 PDU is
then queued for transmission. After the driver completes transmission, it reports the
results of the transmission via the indication call back, indTxFrm.

Prototype INT4 apexTxFrm(APEX apex, UINT4 u4ICI, sAPX_CELL_HDR *psHdr,
UINT1 *pu1Frm, UINT4 u4Len)

Inputs apex: Device handle

u4ICI: ICI of the connection that will carry the frame

psHdr: Cell header that will ride with each cell in the frame

pu1Frm: Pointer to first byte of frame (buffer chain)

u4Len: Frame length (in bytes)

Outputs None

Returns APX_SUCCESS

APX_ERR_INVALID_DEV

APX_ERR_INVALID_STATE

APX_ERR_SAR_TX_FRM_LENGTH

APX_ERR_INVALID_ICI

APX_ERR_CONN_NOT_CFG

APX_ERR_SAR_TX_MSG

Valid States APX_ACTIVE

SAR Transmit Task Function: apexSarTxTaskFn

This function represents the SAR transmit operation. It executes in the context of a
separate task within the RTOS. Your implementation of the system-specific function,
sysApexSarTxTaskFn, should invoke this function. This function will determine
whether the information passed to it is cell information or frame information and will call
the relevant functions to transmit a cell or a frame. After the transmission is complete, it
will report the results of the transmission via the indication callback, indTxCell or
indTxFrm.



S/UNI-APEX (PM7326) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 91
Document ID: PMC-991727, Issue 1

Prototype INT4 apexSarTxTaskFn(APX_TX_CTXT sTxCtxt)

Inputs sTxCtxt: Structure containing the following information:

• apex: Device handle

• txType: Determines whether information is for cell or frame

• cellInfo: Cell information if txType indicates a cell

• frmInfo: Frame information if txType indicates a frame

Outputs None

Returns APX_SUCCESS

APX_ERR_INVALID_DEV

APX_ERR_INVALID_STATE

APX_ERR_SAR_TX_TYPE

APX_ERR_SAR_TX_BUSY

APX_ERR_SAR_TX_NXT_FRM_BUF

Valid States APX_ACTIVE

SAR Receive Task Function: apexSarRxTaskFn

This function represents the SAR receive operation. It executes in the context of a
separate task within the RTOS. Your implementation of the system-specific function,
sysApexSarRxTaskFn, should invoke this function. The function will go through the
four class queues in the order of priority that you specify. It will then read the cell header
to determine whether it has to read a cell or an AAL5 frame and call the appropriate
function to extract the cell or frame. After the extraction is complete, the function will
invoke the indication callback function, indRxCell or indRxFrm, to notify the
application.

Prototype INT4 apexSarRxTaskFn(APEX apex)

Inputs apex: Device handle

Outputs None



S/UNI-APEX (PM7326) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 92
Document ID: PMC-991727, Issue 1

Returns APX_SUCCESS

APX_ERR_INVALID_DEV

APX_ERR_INVALID_STATE

APX_ERR_SAR_RX_CRC10_FAIL

APX_ERR_SAR_RX_BUF_FULL

Valid States APX_ACTIVE

8.20 Multicasting Support Functions

This section describes the functions that install and reset the multicasting callback
function.

Installing the Multicasting Callback Function: apexInstallMulticastFn

Installs a user provided function pointer as the multicast callback function. The installed
function is invoked each time a cell/frame is received by the SAR Rx task. The callback
function is responsible for determining whether the connection on which the cell/frame is
received is part of a multicasting group. If so, it returns a list of connection IDs for the
outgoing connections. The SAR Rx task then transmits the received cell/frame on these
outgoing connections.

Prototype INT4 apexInstallMulticastFn(APEX apex,
APX_MULTICAST_CB_FN multicastCbFn)

Inputs apex: Device handle

multicastFn: pointer to the multicasting callback function

Outputs None

Returns APX_SUCCESS

APX_ERR_INVALID_DEV

APX_ERR_INVALID_STATE

Valid States APX_INIT

APX_ACTIVE

Side Effects Enables the multicasting support provided by the driver



S/UNI-APEX (PM7326) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 93
Document ID: PMC-991727, Issue 1

Resetting the Multicasting Callback Function: apexResetMulticastFn

This function is used to reset the multicasting callback function to a null pointer.

Prototype INT4 apexResetMulticastFn(APEX apex)

Inputs apex: Device handle

Outputs None

Returns APX_SUCCESS

APX_ERR_INVALID_DEV

APX_ERR_INVALID_STATE

Valid States APX_INIT

APX_ACTIVE

Side Effects Disables the multicasting support provided by the driver

8.21 Loop Port Scheduler Functions

Setting Contents of the Port-Weight Table: apexLpsSetPortWts

This function sets the LPS port weight table contents.

Prototype INT4 apexLpsSetPortWts(APEX apex, UINT4 u4NumPorts,
sAPX_PORT_WT *psPortWtTable)

Inputs apex: Device handle

u4NumPorts: Number of ports

psPortWtTable: Pointer to structure containing port numbers and the
corresponding weights

Outputs None



S/UNI-APEX (PM7326) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 94
Document ID: PMC-991727, Issue 1

Returns APX_SUCCESS

APX_ERR_INVALID_DEV

APX_ERR_INVALID_STATE

APX_ERR_INVALID_PORT_ID

APX_ERR_PORT_NOT_CFG

APX_ERR_LPS_INVALID_WT

Valid States APX_INIT

APX_ACTIVE

Getting Contents of the Port-Weight Table: apexLpsGetPortWts

This function retrieves the contents of the LPS port weight table contents.

Prototype INT4 apexLpsGetPortWts(APEX apex, UINT4 u4NumPorts, UINT4
u4PortStart, sAPX_PORT_WT *psPortWtTable)

Inputs apex: Device handle

u4NumPorts: Number of ports

u4PortStart: Starting port number

Outputs psPortWtTable: Pointer to the port weight table, which contains the
port numbers and weights

Returns APX_SUCCESS

APX_ERR_INVALID_DEV

APX_ERR_INVALID_STATE

APX_ERR_INVALID_PORT_ID

Valid States APX_INIT

APX_ACTIVE

Setting Contents of the Poll Sequence Table: apexLpsSetPollSeq

This function sets the LPS port weight table contents.

Prototype INT4 apexLpsSetPollSeq(APEX apex, UINT4 u4NumPorts,
sAPX_PORT_SEQ *psPortSeqTable)



S/UNI-APEX (PM7326) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 95
Document ID: PMC-991727, Issue 1

Inputs apex: Device handle

u4NumPorts: Number of ports

psPortSeqTable: Pointer to structure containing port numbers and
the corresponding sequence numbers

Outputs None

Returns APX_SUCCESS

APX_ERR_INVALID_DEV

APX_ERR_INVALID_STATE

APX_ERR_INVALID_PORT_ID

APX_ERR_PORT_NOT_CFG

APX_ERR_LPS_INVALID_SEQ

Valid States APX_INIT

APX_ACTIVATE

Getting Contents of the Poll Sequence Table: apexLpsGetPollSeq

This function retrieves the contents of the LPS port weight table contents.

Prototype INT4 apexLpsGetPollSeq(APEX apex, UINT4 u4NumPorts, UINT4
u4PortStart, sAPX_PORT_SEQ *psPortSeqTable)

Inputs apex: Device handle

u4NumPorts: Number of ports

u4PortStart: Starting port number

Outputs psPortSeqTable: Pointer to the port sequence table, which contains
the port numbers and sequence numbers.  If the port is not configured,
then the poll sequence is set to 0xff.

Returns APX_SUCCESS

APX_ERR_INVALID_DEV

APX_ERR_INVALID_STATE

APX_ERR_INVALID_PORT_ID



S/UNI-APEX (PM7326) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 96
Document ID: PMC-991727, Issue 1

Valid States APX_INIT

APX_ACTIVE

8.22 WAN Port Scheduler Functions

Setting Contents of the Port-Weight Table: apexWpsSetPortWts

This function sets the WPS port weight table contents.

Prototype UINT4 apexWpsSetPortWts(APEX apex, UINT4 u4NumPorts,
sAPX_PORT_WT *psPortWtTable)

Inputs apex: Device handle

u4NumPorts: Number of ports

psPortWtTable: Pointer to structure containing port numbers and the
corresponding weights

Outputs None

Returns APX_SUCCESS

APX_ERR_INVALID_DEV

APX_ERR_INVALID_STATE

APX_ERR_INVALID_PORT_ID

APX_ERR_PORT_NOT_CFG

APX_ERR_WPS_INVALID_WT

Valid States APX_INIT

APX_ACTIVE

Getting Contents of the Port-Weight Table: apexWpsGetPortWts

This function retrieves the contents of the WPS port weight table contents.

Prototype UINT4 apexWpsGetPortWts(APEX apex, sAPX_PORT_WT *psPortWtTable)

Inputs apex: Device handle



S/UNI-APEX (PM7326) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 97
Document ID: PMC-991727, Issue 1

Outputs psPortWtTable: Pointer to the port weight table, which contains the port
numbers and weights.  If the port is not configured then the port weight
is set to 0xff.

Returns APX_SUCCESS

APX_ERR_INVALID_DEV

APX_ERR_INVALID_STATE

Valid States APX_INIT

APX_ACTIVE

8.23 Statistic Functions

The S/UNI-APEX device provides two types of device counts: statistical counts and
congestion counts. The statistical counts are counts that increase monotonically as they
accumulate over time. The congestion counts are snapshots of the current congestion
counts. They need not increase monotonically. The following functions retrieve these
device counts for the application. By periodically invoking these functions, the
application can maintain a steady count of the types mentioned.

8.24 Statistical Counts

Getting Cell Discard Counts: apexGetStatDiscardCnts

This function retrieves the discarded cell counts accumulated by the S/UNI-APEX
device. These counts include the number of CLP0 and CLP1 cells discarded to congestion,
as well as the number cells discarded for reasons other than congestion.

Prototype INT4 apexGetDiscardCnts(APEX apex, UINT4 *pu4DiscardCnt, UINT4
*pu4Clp0DiscardCnt, UINT4 *pu4Clp1DiscardCnt)

Inputs apex: Device handle



S/UNI-APEX (PM7326) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 98
Document ID: PMC-991727, Issue 1

Outputs pu4DiscardCnt: General discard count of all cells that have been
discarded due to reasons other than congestion (such as re-assembly
timeout and re-assembly maximum-length error)

pu4Clp0DiscardCnt: Count of all CLP0 cells discarded due to
congestion

pu4Clp1DiscardCnt: Count of all CLP1 cells discarded due to
congestion

Returns APX_SUCCESS

APX_ERR_INVALID_DEV

APX_ERR_INVALID_STATE

APX_ERR_POLL_TIMEOUT

Valid States APX_INIT

APX_ACTIVE

Getting Connection-Level Cell-Transmission Counts:
apexGetStatConnTxCnts

This function retrieves the connection-level cell-transmission counts.

Prototype INT4 apexGetStatConnTxCnts(APEX apex, UINT4 u4ICI, UINT4
*pu4VcClp0TxCnt, UINT4 *pu4VcClp1TxCnt)

Inputs apex: Device handle

u4ICI: ICI of the connection

Outputs pu4VcClp0TxCnt: Count of all CLP0 cells transmitted

pu4VcClp1TxCnt: Count of all CLP1 cells transmitted

Returns APX_SUCCESS

APX_ERR_INVALID_DEV

APX_ERR_INVALID_STATE

APX_ERR_INVALID_ICI

APX_ERR_CONN_NOT_CFG

APX_ERR_POLL_TIMEOUT



S/UNI-APEX (PM7326) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 99
Document ID: PMC-991727, Issue 1

Valid States APX_INIT

APX_ACTIVE

8.25 Congestion Counts

Getting Device-Level Congestion Counts: apexGetCongDevCnt

This function returns the total number of cells available for buffering in the device
(FreeCnt).

Prototype INT4 apexGetCongDevCnt(APEX apex, UINT4 *pu4Cnt)

Inputs apex: Device handle

Outputs pu4Cnt: Snapshot of FreeCnt

Returns APX_SUCCESS

APX_ERR_INVALID_DEV

APX_ERR_INVALID_STATE

APX_ERR_POLL_TIMEOUT

Valid States APX_INIT

APX_ACTIVE

Getting Direction-Level Congestion Counts: apexGetCongDirCnt

This function retrieves the count of cells queued for all loop and WAN ports.

Prototype INT4 apexGetCongDirCnt(APEX apex, UINT1 u1Dir, UINT4 *pu4Cnt)

Inputs apex: Device handle

u1Dir:

• 1: Loop

• 2: WAN

Outputs pu4Cnt: Loop/WAN cells queue count



S/UNI-APEX (PM7326) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 100
Document ID: PMC-991727, Issue 1

Returns APX_SUCCESS

APX_ERR_INVALID_DEV

APX_ERR_INVALID_STATE

APX_ERR_INVALID_PORT_ID

APX_ERR_POLL_TIMEOUT

Valid States APX_INIT

APX_ACTIVE

Getting Port-Level Congestion Counts: apexGetCongPortCnt

This function retrieves the count of all cells queued for the specified port.

Prototype INT4 apexGetCongPortCnt(APEX apex, sAPX_PORT_ID *psPortId,
UINT4 *pu4Cnt)

Inputs apex: Device handle

psPortId: Port type (loop, WAN, uP) and number

Outputs pu4Cnt: Cells queued for this port

Returns APX_SUCCESS

APX_ERR_INVALID_DEV

APX_ERR_INVALID_STATE

APX_ERR_INVALID_PORT_ID

APX_ERR_PORT_NOT_CFG

APX_ERR_POLL_TIMEOUT

Valid States APX_INIT

APX_ACTIVE

Getting Class-Level Congestion Counts: apexGetCongClassCnt

This function retrieves the count of all cells queued for the specified class.

Prototype INT4 apexGetCongClassCnt(APEX apex, sAPX_CLASS_ID *psClassId,
UINT4 *pu4Cnt)



S/UNI-APEX (PM7326) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 101
Document ID: PMC-991727, Issue 1

Inputs apex: Device handle

psClassId: Port-class identifier

Outputs pu4Cnt: Cells queued for this class

Returns APX_SUCCESS

APX_ERR_INVALID_DEV

APX_ERR_INVALID_STATE

APX_ERR_INVALID_CLASS_ID

APX_ERR_CLASS_NOT_CFG

APX_ERR_POLL_TIMEOUT

Valid States APX_INIT

APX_ACTIVE

Getting Connection-Level Congestion Counts:
apexGetCongConnCnts

This function retrieves the following congested-connection counts:

• All CLP0 cells in both VC and class queue (VcCLP0Cnt)

• All CLP01 cells in VC queue (VcQCLP01Cnt)

• All CLP01 cells in class queue (VcClassQCLP01Cnt)

Prototype INT4 apexGetCongConnCnts(APEX apex, UINT4 u4ICI, UINT4
*pu4VcClp0Cnt, UINT4 *pu4VcQClp01Cnt, UINT4
*pu4VcClassQClp01Cnt)

Inputs apex: Device handle

u4ICI: ICI of the connection

Outputs pu4VcClp0Cnt: Snapshot of VcCLP0Cnt

pu4VcQClp01Cnt: Snapshot of VcQCLP01Cnt

pu4VcClassQClp01Cnt: Snapshot of VcClassQCLP01Cnt



S/UNI-APEX (PM7326) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 102
Document ID: PMC-991727, Issue 1

Returns APX_SUCCESS

APX_ERR_INVALID_DEV

APX_ERR_INVALID_STATE

APX_ERR_INVALID_ICI

APX_ERR_CONN_NOT_CFG

APX_ERR_POLL_TIMEOUT

Valid States APX_INIT

APX_ACTIVE

8.26 Interrupt Service Functions

This section describes interrupt service functions that perform the following tasks:

• Read and process high-priority interrupt-status registers

• Read and process low-priority interrupt-status registers

• Set and get interrupt masks

• Enable and disable interrupts

• Get and reset interrupt counts

• Set interrupt-count thresholds

Servicing High-Priority Interrupts: apexHiISR

This function reads the high priority interrupt status register of the interrupting device
and compares it with the mask that you define for this register (logical AND operation). If
there are any valid bits set in this register, this function returns a value greater than zero.
If there are no bits set, this function returns a zero. The system-specific interrupt handler
routine, sysApexHiIntHandler, invokes this function.

Prototype UINT4 apexHiISR (APEX apex, UINT4 *pu4Stat)

Inputs apex: Device handle

Outputs pu4Stat: Valid interrupt conditions detected in high-priority interrupt
status register



S/UNI-APEX (PM7326) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 103
Document ID: PMC-991727, Issue 1

Returns = 0: No valid interrupt conditions detected

> 0: At least one valid interrupt condition detected

Valid States APX_ACTIVE

Side Effects If this function returns a non-zero value (meaning the driver detected
an interrupt condition) then all high-priority device interrupts are
disabled

Servicing Low-Priority Interrupts: apexLoISR

This function reads the low priority interrupt error and status registers of the interrupting
device and compares the contents with the corresponding masks that you define (logical
AND operations). If there are any bits set in these registers, this function returns a value
greater than zero. Otherwise, it returns a zero. The system-specific interrupt handler
routine, sysApexLoIntHandler, invokes this function.

Prototype UINT4 apexLoISR(APEX apex, UINT4 *pu4Err, UINT4 *pu4Stat)

Inputs apex: Device handle

Outputs pu4Err: Valid interrupt conditions detected in low-priority interrupt
error-register

pu4Stat: Valid interrupt conditions detected in low-priority interrupt
status-register

Returns = 0: No valid interrupt conditions detected

> 0: At least one valid interrupt condition detected

Valid States APX_ACTIVE

Side Effects If this function returns a non-zero value (meaning the driver detected
an interrupt condition), then all low-priority device interrupts are
disabled



S/UNI-APEX (PM7326) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 104
Document ID: PMC-991727, Issue 1

Processing High-Priority Interrupt-Status Information: apexHiDPR

This function processes the high-priority interrupt status information sent to the DPR task
by the hi-priority ISR routine. Processing involves updating the interrupt counters
corresponding to the interrupt events sent by the ISR. It also involves invoking the
indCritical callback, which informs the application of the events that have crossed
their thresholds. The system-specific DPR function, sysApexDPRtask, invokes this
function.

Prototype UINT4 apexHiDPR(APEX apex, UINT4 u4Stat)

Inputs apex: Device handle

u4Stat: Interrupt conditions detected by apexHiISR in the
high-priority interrupt-status register

Outputs None

Returns APX_SUCCESS

Valid States APX_ACTIVE

Side Effects Enables high-priority interrupts processing after servicing all existing
interrupt conditions

Processing Low-Priority Interrupt-Status Information: apexLoDPR

This function processes the low-priority interrupt error information sent to the DPR task
by the low-priority ISR routine. Processing involves updating the interrupt counters
corresponding to the interrupt events sent by the ISR. It also involves invoking the
indError callback, which informs the application of the events that before have crossed
their thresholds. The system-specific DPR task routine, sysApexDPRtask, invokes this
function.

Prototype UINT4 apexLoDPR(APEX apex, UINT4 u4Err)

Inputs apex: Device handle

u4Err: Interrupt conditions detected by apexLoISR in the
low-priority interrupt-error register

Outputs None



S/UNI-APEX (PM7326) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 105
Document ID: PMC-991727, Issue 1

Returns APX_SUCCESS

Valid States APX_ACTIVE

Side Effects Enables low-priority interrupts processing after servicing all existing
interrupt conditions

Setting Interrupt Masks: apexSetIntMsk

This function sets the desired interrupt masks for the device’s interrupt registers located
in the ISM control block. The driver writes these masks to the device registers when the
driver enables interrupt processing for the device.

Note: The driver masks MpIdle, SarRxRdy, and SarRxEmpty, as well as all the
reserved bits in the mask specified by your application.

Prototype INT4 apexSetIntMsk(APEX apex, UINT1 u1Ctrl, sAPX_INTS
*psMskVal)

Inputs apex: Device handle

u1Ctrl: Specifies which mask register(s) to set:

• APX_HI_INT

• APX_LO_ERROR_INT

• APX_LO_STAT_INT

• APX_ALL_INTS

psMskVal: Mask value(s) to be set. Only those masks will be set that
the driver specifies in u1Ctrl.

Outputs None

Returns APX_SUCCESS

APX_ERR_INVALID_DEV

APX_ERR_INVALID_STATE

APX_ERR_INVALID_MSK_ID

Valid States APX_INIT

APX_ACTIVE



S/UNI-APEX (PM7326) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 106
Document ID: PMC-991727, Issue 1

Getting Interrupt Masks: apexGetIntMsk

This function returns the interrupt masks set by the application from the ISM control
block.

Prototype INT4 apexGetIntMsk(APEX apex, sAPX_INTS *psMskVal)

Inputs apex: Device handle

Outputs psMskVal: Mask values for the three interrupt-mask registers (you
allocate this structure)

Returns APX_SUCCESS

APX_ERR_INVALID_DEV

APX_ERR_INVALID_STATE

Valid States APX_INIT

APX_ACTIVE

Enabling and Disabling Interrupts: apexIntCtrl

This function enables and disables device interrupts by directly writing to the interrupt
mask registers of the S/UNI-APEX device.

Prototype INT4 apexIntCtrl(APEX apex, UINT1 u1EnFlg, UINT1 u1Ctrl)

Inputs apex: Device handle

u1EnFlg:

• APX_ENABLE

• APX_DISABLE

u1Ctrl: Specifies which interrupt to enable or disable:

• APX_HI_INT

• APX_LO_ERROR_INT

• APX_LO_STAT_INT

• APX_ALL_INTS

Outputs None



S/UNI-APEX (PM7326) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 107
Document ID: PMC-991727, Issue 1

Returns APX_SUCCESS

APX_ERR_INVALID_DEV

APX_ERR_INVALID_STATE

APX_ERR_INVALID_FLAG

APX_ERR_INVALID_CTRL_PARAM

Valid States APX_INIT

APX_ACTIVE

Getting Interrupt Counts: apexGetIntCnts

This function returns the interrupt event counts for the high-priority status and
low-priority error interrupt event-counters.

Prototype INT4 apexGetIntCnts(APEX apex, UINT4 *pu4HiCnts, UINT4
*pu4LoErrCnts)

Inputs apex: Device handle

Outputs pu4HiCnts: Pointer to an array of 32 words, which you allocate. The
driver fills in the elements of the array corresponding to the valid
high-priority interrupt events.

pu4LoErrCnts: Pointer to an array of 32 words, which you allocate.
The driver fills in the elements of the array corresponding to the valid
low-priority error interrupt events.

Note: The application should retrieve the valid counts from the array
by using the valid interrupt event definitions (apx_api.h)
corresponding to enabled interrupts.

Returns APX_SUCCESS

APX_ERR_INVALID_DEV

APX_ERR_INVALID_STATE

Valid States APX_INIT

APX_ACTIVE

Resetting Interrupt Counters: apexResetIntCnts

This function resets the interrupt event counters to zero.



S/UNI-APEX (PM7326) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 108
Document ID: PMC-991727, Issue 1

Prototype INT4 apexResetIntCnts(APEX apex)

Inputs apex: Device handle

Outputs None

Returns APX_SUCCESS

APX_ERR_INVALID_DEV

APX_ERR_INVALID_STATE

Valid States APX_INIT

APX_ACTIVE

Setting Interrupt-Count Thresholds: apexSetIntThresh

This function sets thresholds for the interrupt event counters corresponding to the
interrupt bits in the high-priority status and low-priority error interrupt registers. When an
interrupt event-counter crosses its threshold, the driver’s DPR task invokes a callback
(indCritical for hi-priority, indError for low-priority interrupt events) that informs
the application about the event(s) that crossed their thresholds.

Prototype INT4 apexSetIntThresh(APEX apex, UINT1 u1IntType, UINT1
u1EvtId, UINT4 u4Thrsh)

Inputs apex: Device handle

u1IntType:

• APX_HI_INT

• APX_LO_ERR_INT

u1EvtId: Event for which threshold is to be set

u2Thrsh: Threshold value to be set for the event

Outputs None



S/UNI-APEX (PM7326) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 109
Document ID: PMC-991727, Issue 1

Returns APX_SUCCESS

APX_ERR_INVALID_DEV

APX_ERR_INVALID_STATE

APX_ERR_INVALID_INT_TYPE

Valid States APX_INIT

APX_ACTIVE

8.27 Application Callback Functions

The S/UNI-APEX driver uses the following application callback functions to notify the
application of events within the device and driver.

Indicating the Success or Failure of Cell Transmissions: indTxCell

The segmentation and re-assembly (SAR) assist transmit task uses this callback to
confirm the success or failure of a cell transmission request made by the application.
Pointers to the cell header and payload are passed to the application. The application
should de-allocate the cell buffer payload and header.

Prototype void indTxCell(USR_CTXT usrCtxt, UINT4 u4ICI, sAPX_CELL_HDR
*psHdr, UINT1 *pu1Pyld, INT4 result)

Inputs usrCtxt: Pointer to device context information, which the application
maintains

u4ICI: ICI on which cell was transmitted

psHdr: Header of the transmitted cell

psPyld: Payload of the transmitted cell

result:

•  0 : Success

• <0 : Failure

              - APX_ERR_SAR_TX_BUSY (SAR TX is busy)

Outputs None

Returns None



S/UNI-APEX (PM7326) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 110
Document ID: PMC-991727, Issue 1

Indicating the Success or Failure of Cell Receptions: indRxCell

This function is invoked by the SAR receive task after it extracts a cell from the
microprocessor interface. The application should free the cell header and payload buffers.

Prototype void indRxCell(USR_CTXT usrCtxt, UINT4 u4ECI, sAPX_CELL_HDR
*psHdr, UINT1 *pu1Pyld, INT4 result)

Inputs usrCtxt: Pointer to device context information, which the application
maintains

u4ECI: ICI of the connection on which cell was received

psHdr: Header of the received cell

psPyld: Payload of the received cell

result:

•  0 : Success

• <0 : Failure

       - APX_ERR_SAR_RX_CELL_BUF_FULL (Cell buffers are full)

       - APX_ERR_SAR_RX_CRC10_FAIL (CRC10 failure in OAM cell)

Outputs None

Returns None

Indicating the Success or Failure of Frame Transmissions: indTxFrm

This function is used by the SAR transmit task to confirm the success/failure of an AAL5
frame transmission request made by the application. A pointer to the first byte of the
AAL5 frame buffer chain, the header of the last cell in the payload and the ICI of the
connection is passed to the application. The application should de-allocate the frame
payload chain buffer and the frame header buffer.

Prototype void indTxFrm(USR_CTXT usrCtxt, UINT4 u4ICI, sAPX_CELL_HDR
*psHdr, UINT1 *pu1Frm, INT4 result)



S/UNI-APEX (PM7326) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 111
Document ID: PMC-991727, Issue 1

Inputs usrCtxt: Pointer to device context information, which the application
maintains

u4ICI: ICI on which frame was transmitted

psHdr: Header of the transmitted frame

psPyld: Points to the first buffer in the frame payload buffer chain

result:

• 0: Success

• <0: Failure

- APX_ERR_SAR_TX_BUSY (SAR TX is busy)

- APX_ERR_SAR_TX_NXT_FRM_BUF (Error in accessing next

buffer in the frame payload buffer chain)

Outputs None

Returns None

Indicating the Success or Failure of Frame Receptions: indRxFrm

The SAR receive task invokes this function after it extracts an AAL5 frame from the
microprocessor interface. A pointer to the first byte of the AAL5 frame buffer chain, the
header of the last cell in the payload and the ECI of the connection is passed to the
application. The application should de-allocate the frame buffer chain and the cell header
buffer, except for the case when the result returned is
APX_ERR_SAR_RX_FRM_BUF_FULL (returned when frame buffers not available and frame
was discarded)

Prototype void indRxFrm(USR_CTXT usrCtxt, UINT4 u4ECI, sAPX_CELL_HDR
*psHdr, UINT1 *pu1Frm, UINT4 u4Len, INT4 result)



S/UNI-APEX (PM7326) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 112
Document ID: PMC-991727, Issue 1

Inputs usrCtxt: Pointer to device context information, which the application
maintains

u4ECI: ICI of the connection on which frame was received

psHdr: Header of the last cell in frame

               0 if result is APX_ERR_SAR_RX_FRM_BUF_FULL

pu1Frm: Points to the first buffer in the frame payload buffer chain

                 0 if result is APX_ERR_SAR_RX_FRM_BUF_FULL

u4Len: Length of the frame in bytes

              0 if result is APX_ERR_SAR_RX_FRM_BUF_FULL

result:

• 0: Success

• <0: Failure

- APX_ERR_SAR_RX_CRC32_FAIL (CRC32 failure in frame)

- APX_ERR_SAR_RX_FRM_BUF_FULL (Frame buffers are full)

- APX_ERR_SAR_RX_FRM_LENGTH (Mismatch in frame length

received by SAR module and frame length in AAL5

       trailer)

- APX_ERR_SAR_RX_TIMEOUT (Timeout error while assembling

AAL5 frame)

 Outputs None

Returns None

Inquiring Whether the Received Cell or Frame is part of Multicasting
Group: isVcMulticast

The multicasting support feature in the driver is enabled when this callback function is
installed by invoking  apexInstallMulticastFn. Thereafter this callback function is
invoked within the context of the SAR receive task, each time it receives a cell or frame.
Based on the connection ID of the incoming cell or frame, the application will then
decide whether this cell or frame has to be forwarded to certain outgoing connections. If
so, the function will return the number of outgoing connections and the connection ID for
each connection. If the application does not want the cell to be forwarded, it should set
the number of outgoing connections to 0.



S/UNI-APEX (PM7326) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 113
Document ID: PMC-991727, Issue 1

Prototype void isVcMulticast(USR_CTXT usrCtxt, UINT2 u2ICI,

UINT2 *pu2NumICI, UINT2 **ppu2ICIList)

Inputs usrCtxt: Pointer to device context information, which the application
maintains

u4ICI: ICI on which cell or frame was received

Outputs pu2NumICI: Pointer to a variable specifying the number of outgoing
connections on which the application wants the cell/frame to be
forwarded. If the application does not want the cell to be forwarded,
then the number of outgoing connections should be set to 0.

ppu2ICIList: Pointer to an array of connection IDs of the outgoing
connections on which the application wants the cell/frame to be
forwarded. Note that after multicasting the cell or frame the driver will
de-allocate, the memory allocated by the application code for the array
of connection id’s.

Returns None

Indicating Critical Events: indCritical

apexHiDPR, which executes in the context of the DPR task, invokes this function
whenever a high priority interrupt count exceed the corresponding threshold value set by
the user. The DPR task provides the application with an eventId, which identifies the
interrupt counter that crossed the threshold.

Prototype void indCritical(USR_CTXT usrCtxt, UINT4 u4EventId, UINT4
u4Arg1, UINT4 u4Arg2, UINT4 u4Arg3)



S/UNI-APEX (PM7326) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 114
Document ID: PMC-991727, Issue 1

Inputs usrCtxt: Pointer to device context information, which the application
maintains

u4EventId: ID of the critical event as listed below
APX_EVT_SDRAM_CRC_ERR

APX_EVT_SSRAM_PAR_ERR

APX_EVT_Q_FREE_CNT_ZERO_ERR

APX_EVT_LR_PAR_ERR

APX_EVT_LR_RUNT_CELL_ERR

APX_EVT_LT_CELL_XF_ERR

APX_EVT_WR_PAR_ERR

APX_EVT_WR_RUNT_CELL_ERR

APX_EVT_WR_CELL_XF_ERR

u4Arg1: not used

u4Arg2: not used

u4Arg3: not used

Outputs None

Returns None

Indicating Errors: indError

apexLoDPR, which executes in the context of the DPR task, invokes this function
whenever a low priority error interrupt count exceed the corresponding threshold value
set by the user. The DPR task provides the application with an eventId, which identifies
the interrupt counter that crossed the threshold. Based on the event the DPR task will
provide additional information relevant to the interrupt, for example the ICI of the
connection, which caused the interrupt.

Prototype void indError(USR_CTXT usrCtxt, UINT4 u4EventId, UINT4 u4Arg1,
UINT4 u4Arg2, UINT4 u4Arg3)



S/UNI-APEX (PM7326) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 115
Document ID: PMC-991727, Issue 1

Inputs usrCtxt: Pointer to device context information, which the application
maintains

u4EventId: ID of the error event as listed below

u4Arg1 : value depends on error event as shown below

u4Arg2 : value depends on error event as shown below

u4Arg3 : value depends on error event as shown below

          Event ID                                Arg1          Arg2        Arg3

APX_EVT_Q_VC_REAS_TIME_ERR ICI - -

APX_EVT_Q_VC_REAS_LEN_ERR ICI - -

APX_EVT_Q_CELL_RX_ERR ICI - -

APX_EVT_Q_VC_MAX_THRESH_ERR ICI - -

APX_EVT_Q_CLASS_MAX_THRESH_ERR portType portNum classNum

APX_EVT_Q_PORT_MAX_THRESH_ERR portType portNum -

APX_EVT_Q_DIR_MAX_THRESH_ERR loopCnt wanCnt -

APX_EVT_Q_SHP0_ICTR_ERR - - -

APX_EVT_Q_SHP1_ICTR_ERR - - -

APX_EVT_Q_SHP2_ICTR_ERR - - -

APX_EVT_Q_SHP3_ICTR_ERR - - -

Outputs None

Returns None



S/UNI-APEX (PM7326) Driver Manual
Hardware Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 116
Document ID: PMC-991727, Issue 1

9 HARDWARE INTERFACE

9.1 Device Input and Output Functions

Reading the Contents of Address Locations: sysApexRawRead

This low-level macro reads the contents of a specific address location. Define this macro
to reflect the application’s addressing logic.

Prototype UINT4 sysApexRawRead(UINT4 addr)

Inputs addr: Address location to be read

Outputs None

Returns Value read from the address location

Writing the Contents of Address Locations: sysApexRawWrite

This low-level macro writes the contents of a specific address location. Define this macro
to reflect the application’s addressing logic.

Prototype void sysApexRawWrite(UINT4 addr, UINT4 val)

Inputs addr: Address location to write

val: Value to be written

Outputs None

Returns None

Detecting New Devices: sysApexDeviceDetect

This function detects the device in the underlying hardware and retrieves system-specific
information about the device (such as the base address of device). The function is called
within the apexAdd API function.



S/UNI-APEX (PM7326) Driver Manual
Hardware Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 117
Document ID: PMC-991727, Issue 1

Prototype INT4 sysApexDeviceDetect(APX_USR_CTXT usrCtxt, void
**ppSysInfo, UINT4 *pu4BaseAddr)

Inputs usrCtxt: Pointer to device context information, which the application
maintains

Outputs ppSysInfo: Application information that you maintain (such as PCI
slot and IRQ). The driver stores this pointer.

pu4BaseAddr: Base address of device

Returns = 0: Device detected successfully

< 0: Device detection failed

9.2 Interrupt Service Functions

This section describes the functions that the driver needs for interrupt processing. For
details on the interrupt service architecture, go to page 26.

ISR Installation and Removal Functions

The following functions install and remove the system-specific interrupt handlers
(sysApexHiIntHandler and sysApexLoIntHandler) and deferred processing
routines for the S/UNI-APEX devices.

Installing System-Specific Interrupt Handlers:
sysApexIntInstallHandler

This function installs the functions sysApexHiIntHandler and
sysApexLoIntHandler, in the processor’s interrupt vector table. It also spawns the
DPR and creates the message queue. The ISR routines use the message queue to send
interrupt context information to the DPR task.

Prototype INT4 sysApexIntInstallHandler(sAPX_DDB *psDdb)

Inputs psDdb: Device handle

Outputs None



S/UNI-APEX (PM7326) Driver Manual
Hardware Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 118
Document ID: PMC-991727, Issue 1

Returns = 0: Interrupts installed successfully

< 0: Interrupt installation failed

Removing System-Specific Interrupt Handlers:
sysApexIntRemoveHandler

This function removes interrupt processing for the device. If the device is the last device
for which the driver has enabled interrupt processing, it removes
sysApexHiIntHandler and sysApexLoIntHandler from the processor’s interrupt
vector table. Then it deletes the sysApexDPRtask task and its associated message
queue.

Prototype INT4 sysApexIntRemoveHandler(sAPX_DDB *psDdb)

Inputs psDdb: Device handle

Outputs None

Returns = 0: Interrupts removed successfully

< 0: Interrupt removal failed

System-Specific ISR Functions

The driver invokes the system-specific ISR functions, sysApexHiIntHandler and
sysApexLoIntHandler, when the device(s) raise high priority and low priority
interrupts respectively. You should implement these routines as described below:

Handling High-Priority Interrupts: sysApexHiIntHandler

The driver invokes this function when one or more devices raise the high-priority
interrupt line to the microprocessor. This function invokes the driver-provided function,
apexHiISR, for each device registered with the driver.

Prototype void sysApexHiIntHandler(UINT4 u4IntId)

Inputs u4IntId: System-specific interrupt identifier (such as IRQ)

Outputs None

Returns None



S/UNI-APEX (PM7326) Driver Manual
Hardware Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 119
Document ID: PMC-991727, Issue 1

Handling Low-Priority Interrupts: sysApexLoIntHandler

The driver invokes this function when one or more devices raise the low-priority interrupt
to the microprocessor. This function invokes apexLoISR for each device registered with
the driver. If apexLoISR detects at least one valid pending interrupt condition, then
sysApexLoIntHandler queues the interrupt context information (output by
apexLoISR) for later processing by sysApexDPRtask and/or sysApexSarRxTask
depending on the nature of the interrupt conditions detected.

Prototype void sysApexLoIntHandler(UINT4 u4IntId)

Inputs u4IntId: System-specific interrupt identifier (such as IRQ)

Outputs None

Returns None

System-Specific DPR Functions

Deferred Interrupt Processing: sysApexDPRtaskFn

The driver spawns this function as a separate task within the RTOS. It retrieves interrupt
status information saved for it by the sysApexLoIntHandler function and invokes the
apexDPR routine for the appropriate device.

Prototype void sysApexDPRtaskFn(void)

Inputs None

Outputs None

Returns None



S/UNI-APEX (PM7326) Driver Manual
RTOS Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 120
Document ID: PMC-991727, Issue 1

10 RTOS INTERFACE

The S/UNI-APEX driver uses the following macros to access RTOS services.

10.1 Memory Allocation and De-allocation Functions

This section describes the functions that allocate and free memory.

Allocating Memory: sysApexMemAlloc

This function allocates the specified number of bytes.

Prototype void *sysApexMemAlloc(UINT4 u4Bytes)

Inputs u4Bytes: Number of bytes to be allocated

Outputs None

Returns Pointer to first byte of allocated memory

NULL pointer (memory allocation failed)

Freeing Memory: sysApexMemFree

This function frees allocated memory.

Prototype void sysApexMemFree(UINT1 *pu1First)

Inputs pu1First: Pointer to first byte of the memory region being
de-allocated

Outputs None

Returns None



S/UNI-APEX (PM7326) Driver Manual
RTOS Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 121
Document ID: PMC-991727, Issue 1

10.2 Buffer Management Functions

Cell Buffer Functions

Allocating Cell Header Structures and Buffers: sysApexAllocCellBuf

This function allocates a cell header structure and a cell payload buffer.

Prototype INT4 sysApexAllocCellBuf(sAPX_CELL_HDR **ppsHdr, UINT1
**ppu1Pyld)

Inputs None

Outputs ppsHdr: Contains pointer to allocated cell header buffer

ppu1Pyld: Contains pointer to allocated cell payload buffer

Returns = 0: Success

< 0: Failure

Freeing Cell Header Structures and Buffers: sysApexFreeCell

This function returns a cell header structure and payload buffer pair to the free pool.

Prototype void sysApexFreeCell(sAPX_CELL_HDR *pHdr, UINT1 *pu1Pyld)

Inputs psHdr: Pointer to cell header buffer

pu1Pyld: Pointer to cell payload buffer

Outputs None

Returns None

Frame Buffer Functions

Allocating the First Frame Buffer in a Chain: sysApexAllocFrmBuf

This function allocates the first buffer of a frame buffer chain.



S/UNI-APEX (PM7326) Driver Manual
RTOS Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 122
Document ID: PMC-991727, Issue 1

Prototype INT4 sysApexAllocFrmBuf(UINT4 u4Size, sAPX_CELL_HDR **ppsHdr,
UINT1 **ppu1Buf)

Inputs u4Size: Size of buffer in bytes

Outputs ppsHdr: Contains pointer to allocated cell-header buffer

ppu1Pyld: Contains pointer to allocated cell-payload buffer

Returns = 0: Success

< 0: Failure

Adding the Next Frame Buffer to a Chain: sysApexAllocNxtFrmBuf

This function allocates and chains a new buffer to the tail of a frame-buffer-chain. In
doing so it provides a pointer to the last buffer of the frame chain.

Prototype UINT1 *sysApexAllocNxtFrmBuf(UINT4 u4Size, UINT1 *pu1PrevBuf)

Inputs u4Size: Size of buffer in bytes

pu1PrevBuf: Pointer to last buffer of current frame chain

Outputs None

Returns Pointer to first data byte in the new frame buffer (chained to the
previous buffer)

NULL pointer (buffer unavailable)

Getting a Frame Buffer’s Size: sysApexGetFrmBufSz

This function retrieves the size of a frame buffer given a pointer to the first byte of the
buffer.

Prototype UINT4 sysApexGetFrmBufSz(UINT1 *pu1Buf)

Inputs pu1Buf: Pointer to first data byte in buffer

Outputs None



S/UNI-APEX (PM7326) Driver Manual
RTOS Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 123
Document ID: PMC-991727, Issue 1

Returns Size in bytes (zero if buffer is invalid)

Getting the Next Frame Buffer’s Size: sysApexGetNxtFrmBuf

This function retrieves the pointer to the first byte of the next frame buffer, given the first
byte pointer of the previous buffer in the buffer chain.

Prototype UINT1 *sysApexGetNxtFrmBuf(UINT1 *pu1PrevBuf, UINT4 *pu4Size)

Inputs pu1PrevBuf: Pointer to last buffer of current frame chain

Outputs pu4Size: Size of the next buffer in bytes

Returns Pointer to first data byte in the next frame buffer (chained to the
previous buffer)

NULL pointer (buffer unavailable)

Freeing Frame Buffers: sysApexFreeFrm

This function frees all frame buffers in the frame buffer chain.

Prototype void sysApexFreeFrm(UINT1 *pu1FirstBuf)

Inputs pu1FirstBuf: Pointer to the first data byte of the first buffer in the
frame buffer chain

Outputs None

Returns None

10.3 Timer Functions

This section describes the timer-related service needed by the driver.

Delaying Tasks: sysApexTaskDelay

This function suspends execution of the calling task for a specified time.

Prototype INT4 sysApexTaskDelay(UINT4 u4Msecs)



S/UNI-APEX (PM7326) Driver Manual
RTOS Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 124
Document ID: PMC-991727, Issue 1

Inputs u4Msecs: Delay length in milliseconds

Outputs None

Returns = 0: Success

< 0: Failure

10.4 Semaphore Functions

This section describes the functions that perform the following semaphore tasks:

• Create semaphores

• Delete semaphores

• Take semaphores

• Release semaphores

Creating Semaphores: sysApexSemCreate

This function creates a mutual-exclusion semaphore.

Prototype void *sysApexSemCreate(void)

Inputs None

Outputs None

Returns Pointer to semaphore object or null

Deleting Semaphores: sysApexSemDelete

This function deletes a semaphore.

Prototype void sysApexSemDelete(void *semId)

Inputs semId: Semaphore identifier

Outputs None



S/UNI-APEX (PM7326) Driver Manual
RTOS Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 125
Document ID: PMC-991727, Issue 1

Returns None

Taking Semaphores: sysApexSemTake

This function acquires a semaphore.

Prototype INT4 sysApexSemTake(void *semId)

Inputs semId: Semaphore identifier

Outputs None

Returns = 0: Success

< 0: Failure

Releasing Semaphores: sysApexSemGive

This function relinquishes a semaphore.

Prototype INT4 sysApexSemGive(void *semId)

Inputs semId: Semaphore identifier

Outputs None

Returns = 0: Success

< 0: Failure

10.5 Pre-Emption Control Functions

This section describes the functions used to disable and enable pre-emption of the
currently executing task.

Disabling Task Pre-emption: sysApexPreemptDis

This function disables possible pre-emption of the currently executing task by other tasks
or the interrupt handler.

Prototype INT4 sysApexPreemptDis(void)



S/UNI-APEX (PM7326) Driver Manual
RTOS Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 126
Document ID: PMC-991727, Issue 1

Inputs None

Outputs None

Returns Pre-emption key (this is passed back as an input argument when re-
enabling pre-emption)

Enabling Task Pre-Emption: sysApexPreemptEn

This function enables pre-emption of the currently executing task.

Prototype void sysApexPreemptEn(INT4 i4Key)

Inputs i4Key: Pre-emption key returned by sysApexPreemptDis when
disabling preemption for this task

Outputs None

Returns None

10.6 Segmentation and Re-Assembly Assist Functions

This section describes the segmentation and re-assembly (SAR) assist component
functions.

Creating SAR Tasks: sysApexSarInstall

This function creates the apxSarTx and the apxSarRx tasks. The role of apxSarTx is to
transmit cells and frames to the microprocessor port of the S/UNI-APEX device. The
apxSarRx receives cells and frames from the microprocessor port of the device. The
function also creates the message queues, SarTxMsgQ and the SarRxMsgQ.

Prototype INT4 sysApexSarInstall(void)

Inputs None

Outputs None



S/UNI-APEX (PM7326) Driver Manual
RTOS Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 127
Document ID: PMC-991727, Issue 1

Returns = 0: Success

< 0: Failure

Removing SAR Tasks: sysApexSarRemove

This function deletes the apxSarTx and apxSarRx tasks and the corresponding message
queues, SarTxMsgQ and SarRxMsgQ.

Prototype INT4 sysApexSarRemove(void)

Inputs None

Outputs None

Returns = 0: Success

< 0: Failure

SAR Transmit Task Function: sysApexSarTxTaskFn

The driver spawns this function as a separate task within the RTOS. It waits for a cell or
frame transmission-request message on the SarTxMsgQ. Upon receiving a message, it
invokes apexSarTxTaskFn for the appropriate device.

Prototype void sysApexSarTxTaskFn(void)

Inputs None

Outputs None

Returns None

SAR Receive Task Function: sysApexSarRxTaskFn

The driver spawns this function as a separate task within the RTOS. It retrieves interrupt
status information saved for it by the sysApexLoIntHandler function and invokes the
apexSarRxTaskFn function for each device handle received in the message.

Prototype void sysApexSarRxTask(void)



S/UNI-APEX (PM7326) Driver Manual
RTOS Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 128
Document ID: PMC-991727, Issue 1

Inputs None

Outputs None

Returns None

Sending Transmission Request Messages: sysApexSarTxMsg

This function is invoked by apexTxCell and apexTxFrame API functions in order to
send cell and frame transmission requests to the SAR Tx task. The function puts the
cell/frame information into a message structure and queues it in the SarTxMsgQ.

Prototype INT4 sysApexSarTxMsg(sAPX_TX_CTXT sTxMsg)

Inputs sTxMsg: Cell/frame transmission-request information

Outputs None

Returns = 0: Success

< 0: Failure



S/UNI-APEX (PM7326) Driver Manual
Porting Drivers

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 129
Document ID: PMC-991727, Issue 1

11 PORTING DRIVERS

This section outlines how to port the S/UNI-APEX device driver to your hardware and
OS platform. However, this manual can offer only guidelines for porting the S/UNI-
APEX driver because each platform and application is unique.

11.1 Driver Source Files

The C source files listed in Table 21 and Table 22 contain the code for the S/UNI-APEX
driver. You may need to modify the code or develop additional code. The code is in the
form of constants, macros, and functions. For ease of porting, the code is grouped into
source files (src) and include files (inc). The src files contain the functions and the
inc files contain the constants and macros. A makefile is also included.

Table 21: Source Files

File Description

apx_api1.c Top-level API functions
apx_api2.c Low-level utility API functions
apx_hw.c Hardware interface functions
apx_rtos.c RTOS interface functions
apx_io.c Input/Output functions
apx_ism.c Interrupt control functions
apx_qe.c Queue engine operations
apx_sar.c SAR-assist operations
apx_stat.c Statistics functions
apx_util.c Commonly used utility functions
apx_lps.c Loop port and WAN port scheduler functions
apx_prof.c Profile management routines
apx_eg.c Example implementation of callback and other functions

Table 22: Include Files

File Description

apx_api.h API function prototypes, data structures, constants, and definitions



S/UNI-APEX (PM7326) Driver Manual
Porting Drivers

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 130
Document ID: PMC-991727, Issue 1

File Description

apx_typs.h Variable type definitions
apx_hw.h Hardware interface constants and macro definitions
apx_rtos.h RTOS interface constants and macro definitions
apx_err.h Error codes returned by the driver
apx_defs.h Driver’s internal constants and macro definitions
apx_strs.h Driver’s internal data structures
apx_fns.h Prototypes of driver’s internal functions
apx_eg.h Data structures, constants, and definitions used by sample code in

apx_eg.c

11.2 Porting Procedure

The following procedures summarize how to port the S/UNI-APEX driver to your
platform. The subsequent sections describe these procedures in more detail.

To port the S/UNI-APEX driver to your platform:

Step 1: Port the driver’s hardware interface  (page 130):

Step 2: Port the driver’s OS extensions (page 132):

Step 3: Port the driver’s application-specific elements (page 134):

Step 4: Build the driver (page 135).

Step 1: Porting the Hardware Interface

This section describes how to modify the S/UNI-APEX driver for your hardware
platform.

To port the driver to your hardware platform:

1. Modify the variable type definitions in apx_typs.h.

2. Modify the low-level device read/write macros in the apx_hw.h file. You may
need to modify the raw read/write access macros (sysApexRawRead and
sysApexRawWrite) to reflect the application’s addressing logic.



S/UNI-APEX (PM7326) Driver Manual
Porting Drivers

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 131
Document ID: PMC-991727, Issue 1

3. Define the hardware system-configuration constants in the apx_hw.h file. Modify
the following constants to reflect the application’s hardware configuration:

Device Constant Description Default

APX_MAX_DEVS The maximum number of S/UNI-
APEX devices to be controlled by
the driver

2

APX_MAX_CELL_BUFS The greatest of the per-device cell
buffer requirements

256K

APX_MAX_NUM_VCS The greatest of the per-device VC
requirements

64K

APX_POLL_DELAY Delay between two consecutive
polls of a busy bit

5uS

APX_MAX_POLL_TRIES Maximum number of times a busy
bit will be polled before the
operation times out

100

APX_PORT_DISABLE_DELAY_MSECS The number of milliseconds the
driver waits during the port disable
operation for the PortCnt
parameter to become 0

1

APX_CLASS_DISABLE_DELAY_MSECS The number of milliseconds the
driver waits during the class
disable operation (shaped classes
only) for the associated shaper slot
table to deplete itself completely
into the class queue

1

APX_CONN_DISABLE_DELAY_MSECS The number of milliseconds the
driver waits during the connection
disable operation for the
VcClassQClp01Cnt parameter to
become 0

1

APX_SDRAM_REFRESH_RT Default SDRAM refresh rate used
for SDRAM tests

0xf

4. Modify the sysApexDeviceDetect function in apx_hw.c as per your hardware
environment. This function should output the base address of the APEX device. This
function also outputs a pointer to system-specific configuration information (for
example, IRQ associated with the device interrupt). This output parameter is simply
stored by the driver in the DDB can be returned as NULL if not required by other
system-specific functions (for example, sysApexIntInstallHandler).



S/UNI-APEX (PM7326) Driver Manual
Porting Drivers

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 132
Document ID: PMC-991727, Issue 1

5. Modify the sysApexBusyBitPoll function if necessary. This function polls a
specified busy bit APX_MAX_POLL_TRIES with a APX_POLL_DELAY polling
interval. If the bit does not reach its desired value, the function returns with an error
code of –1.

6. (OPTIONAL) Modify the sysApexDebugRead, sysApexDebugWrite and
sysApexTrace functions. Porting these functions is only required if you want to use
the debug message printing feature of register accesses and error messages (enabled
by compile switch, APX_CSW_DEBUG).

Step 2: Porting the RTOS interface

The RTOS interface functions and macros consist of code that is RTOS dependent and
needs to be modified as per your RTOS’s characteristics.

To port the driver’s RTOS interface:

1. Redefine the following macros in apx_rtos.h to the corresponding system calls
that your target system supports. See apx_eg.c for example implementations of the
buffer management routines

Service Type Macro Name Description

sysApexMemAlloc Allocates a memory block
sysApexMemFree Frees a memory block
sysApexMemSet Fills a memory block with a specified

value
sysApexMemCpy Copies the contents of one memory

block to another

Memory

sysApexMemCmp Compares the contents of one memory
block with another

sysApexAllocCellBuf Allocates a cell buffer
sysApexFreeCell Frees a cell buffer
sysApexAllocFrmBuf Allocates a frame buffer
sysApexAllocNxtFrmBuf Allocates and chains a new frame buffer

to the previous buffer of the specified
frame

sysApexGetFrmBufSz Obtains the length of the payload in a
frame buffer

Buffer
Management

sysApexGetNxtFrmBuf Retrieves the frame buffer (and its size)
immediately following the specified
frame buffer



S/UNI-APEX (PM7326) Driver Manual
Porting Drivers

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 133
Document ID: PMC-991727, Issue 1

Service Type Macro Name Description

sysApexFreeFrm Frees the entire chain of frame buffers
that comprise the specified frame

sysApexSemCreate Creates a mutual-exclusion semaphore
sysApexSemDelete Destroys the specified semaphore
sysApexSemTake Acquires the specified semaphore

Semaphores

sysApexSemGive Relinquishes the specified semaphore

2. Modify the system-specific interrupt handler, SAR processing and delay routines in
apx_rtos.c:

Service Type Function Name Description

sysApexIntInstallHandler Installs the interrupt handler for
the OS

sysApexIntRemoveHandler Removes the interrupt handler
from the OS

sysApexHiIntHandler Interrupt handler for the high-
priority S/UNI-APEX interrupt
line

sysApexLoIntHandler Interrupt handler for the low-
priority S/UNI-APEX interrupt
line

Interrupt
Service/Polling

sysApexDPRTaskFn Deferred processing routine that
waits for interrupt context
information to be sent by the ISR
routines and then processes the
interrupt status information

sysApexSarInstall Spawns the SAR Rx and Tx tasks
and associated message queues

SAR
Processing

sysApexSarRemove Deletes the SAR Rx and Tx tasks
and associated message queues



S/UNI-APEX (PM7326) Driver Manual
Porting Drivers

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 134
Document ID: PMC-991727, Issue 1

Service Type Function Name Description

sysApexSarTxTaskFn This function is executed in the
context of the SAR Tx task. It
receives cell and frame
transmission requests from the
application task and invokes the
appropriate cell/frame
transmission API function.

sysApexSarRxTaskFn This function is executed in the
context of the SAR Rx task. It
extracts cells and frames from the
S/UNI-APEX SAR interface and
sends them to the application task
using the indRxCell/indRxFrm
callback functions

sysApexSarTxMsg This routine is used by the
application task to send cell/frame
transmission requests to the SAR
Tx task

Timer sysApexTaskDelay Puts the currently executing task
to sleep for a specified number of
milliseconds

sysApexPreemptDis Disables pr-eemption of the
currently executing task by any
other task or interrupt

Pre-emption
Lock/Unlock

sysApexPreemptEn Re-enables pre-emption of a task
by other tasks and/or interrupts

Step 3: Porting the Application-Specific Elements

Porting the application-specific elements includes coding the indication callback
functions and defining the base value from which the S/UNI-APEX driver’s error codes
start.

To port the driver’s system-specific elements:

1. Modify the base value of APX_ERR_BASE (default = 300) in apx_err.h.

2. Code the callback functions according to the application. Example implementations
of these callback functions are provided in apx_eg.c. The callback functions are the
following:



S/UNI-APEX (PM7326) Driver Manual
Porting Drivers

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 135
Document ID: PMC-991727, Issue 1

° void indCritical(APX_USR_CTXT usrCtxt, UINT4 u4EventId,
UINT4 u4Arg1, UINT4 u4Arg2, UINT4 u4Arg3)

° void indError(APX_USR_CTXT usrCtxt, UINT4 u4EventId, UINT4
u4Arg1, UINT4 u4Arg2, UINT4 u4Arg3)

° void indTxCell(APX_USR_CTXT usrCtxt, UINT4 u4ICI,
sAPX_CELL_HDR *psHdr, UINT1 *pu1Pyld, INT4 i4Result)

° void indRxCell(APX_USR_CTXT usrCtxt, UINT4 u4ECI,
sAPX_CELL_HDR *psHdr, UINT1 *pu1Pyld, INT4 i4Result)

° void indTxFrm(APX_USR_CTXT usrCtxt, UINT4 u4ICI,
sAPX_CELL_HDR *psHdr, UINT1 *pu1Frm, INT4 i4Result)

° void indRxFrm(APX_USR_CTXT usrCtxt, UINT4 u4ECI,
sAPX_CELL_HDR *psHdr, UINT1 *pu1Frm, UINT4 u4Length, INT4
i4Result)

° void isVcMulticast(APX_USR_CTXT usrCtxt, UINT2 u2ICI,
UINT2 *pu2NumICI, UINT2 **ppu2ICIList);

Step 4: Building the Driver

This section describes how to build the S/UNI-APEX driver.

To build the driver:

1. Modify the Makefile to reflect the absolute path of your code, your compiler and
compiler options

2. Choose from among the different compile options supported by the driver as per your
requirements.

3. Compile the source files and build the S/UNI-APEX API driver library using your
make utility.

4. Link the S/UNI-APEX API driver library to your application code.



S/UNI-APEX (PM7326) Driver Manual
Appendix A: Driver Return Codes

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 136
Document ID: PMC-991727, Issue 1

APPENDIX A: DRIVER RETURN CODES

Table 23 describes the driver’s return types.

Table 23: Return Types

Return Type Description

APX_ERR_CLASS_NOT_ENABLED Associated class not enabled
APX_ERR_CLASS_NOT_FREE Class already configured
APX_ERR_DEV_ALREADY_ADDED Device already added
APX_ERR_DEV_NOT_DETECTED Device was not detected
APX_ERR_DEVS_FULL Maximum number of devices already added
APX_ERR_INVALID_CLASS_ID Invalid class ID
APX_ERR_INVALID_CLASS_VECTOR Invalid class vector
APX_ERR_INVALID_CONN_ID Invalid connection ID
APX_ERR_INVALID_CONN_VECTOR Invalid connection vector
APX_ERR_INVALID_CTRL_PARAM Invalid control parameter
APX_ERR_INVALID_DEV Invalid device handle
APX_ERR_INVALID_FLAG Invalid value for u1enflg
APX_ERR_INVALID_INIT_VECTOR Invalid initialization vector
APX_ERR_INVALID_INT_TYPE Invalid interrupt type
APX_ERR_INVALID_MSK_ID Invalid mask register
APX_ERR_INVALID_PORT_ID Invalid port ID
APX_ERR_INVALID_PORT_VECTOR Invalid port vector
APX_ERR_INVALID_PROFILE_NUM Invalid profile number
APX_ERR_INVALID_SHPR_ID Invalid shaper number
APX_ERR_INVALID_SHPR_VECTOR Invalid shaper vector
APX_ERR_INVALID_STATE Invalid device state
APX_ERR_INVALID_TEST_PARAM Invalid test parameter
APX_ERR_LPS_INVALID_WT Invalid contents in the loop port weight table
APX_ERR_WPS_INVALID_WT Invalid contents in the WAN port weight table
APX_ERR_MEM_ALLOC Memory allocation failure
APX_ERR_MODULE_NOT_INIT Driver has not been initialized



S/UNI-APEX (PM7326) Driver Manual
Appendix A: Driver Return Codes

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 137
Document ID: PMC-991727, Issue 1

Return Type Description

APX_ERR_POLL_TIMEOUT Memory port access failed
APX_ERR_PORT_NOT_CFG Port not configured
APX_ERR_PORT_NOT_ENABLED Port is not enabled
APX_ERR_PORT_NOT_FREE Port already configured
APX_ERR_PROFILES_FULL All initialization profiles are in use
APX_ERR_PROFILE_VECTOR_BOTH_VALID Both vector profile number are valid
APX_ERR_SAR_RX_CRC10_FAIL CRC-10 check failed
APX_ERR_SAR_TX_BUSY SAR transmit component is busy
APX_ERR_SAR_TX_MSG Error in sending message to SAR transmit

message queue
APX_ERR_SAR_TX_TYPE Error in value of txtype
APX_ERR_SHPR_NOT_FREE Associated port-class still configured
APX_FAILURE Test failed
APX_SUCCESS The function succeeded
APX_ERR_DLL_PHASE_LOCK DLL phase lock failure
APX_ERR_SEMAPHORE Semaphore allocation error
APX_ERR_INVALID_EVENT_ID Invalid event ID
APX_ERR_MODULE_ALREADY_INIT Driver already initialized
APX_ERR_INVALID_TYPE_ID Device detected has invalid TYPE/ID
APX_ERR_INT_INSTALL Error installing interrupts
APX_ERR_INT_REMOVE Error removing interrupts
APX_ERR_INVALID_MODE Invalid mode parameter specified
APX_ERR_INVALID_REG Invalid register offset
APX_ERR_INVALID_ADDR Invalid address
APX_ERR_INVALID_MSKDATA Invalid mask data
APX_ERR_INVALID_MP_CTRL Invalid memory port control parameter(s)
APX_ERR_INVALID_CELL_START Invalid cell start address
APX_ERR_INVALID_CELL_NUM Invalid number of cells
APX_ERR_INVALID_CTXT Invalid context type
APX_ERR_INVALID_WORD Invalid context word
APX_ERR_INVALID_NUM_CELL_BUFS Invalid number of cell buffers



S/UNI-APEX (PM7326) Driver Manual
Appendix A: Driver Return Codes

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 138
Document ID: PMC-991727, Issue 1

Return Type Description

APX_ERR_WDG_PTRL_BUSY Watchdog patrol already active
APX_ERR_PORT_CTXT_CHK Port context image mismatch
APX_ERR_CLASS_NOT_CFG Class not configured
APX_ERR_CLASS_CTXT_CHK Class context image mismatch
APX_ERR_INVALID_TX_SLOT Invalid shaper txslot
APX_ERR_SHPR_NOT_CFG Shaper not configured
APX_ERR_INVALID_ICI Invalid ICI
APX_ERR_CONN_NOT_CFG Connection not configured
APX_ERR_CONN_NOT_FREE Connection not free
APX_ERR_INVALID_RANGE Invalid ICI watchdog patrol range
APX_ERR_CONN_CTXT_CHK Connection context image mismatch
APX_ERR_SAR_INSTALL SAR assist module installation error
APX_ERR_SAR_REMOVE SAR assist module removal error
APX_ERR_SAR_TX_NXT_FRM_BUF Error getting SAR transmit frame buffer
APX_ERR_SAR_TX_FRM_LENGTH Invalid frame length
APX_ERR_SAR_RX_CELL_BUF_FULL SAR receive cell buffer is full
APX_ERR_SAR_RX_CRC32_FAIL SAR receive CRC32 check failure
APX_ERR_SAR_RX_TIMEOUT SAR receive timeout
APX_ERR_SAR_RX_FRM_BUF_FULL SAR receive frame buffer is full
APX_ERR_SAR_RX_FRM_LENGTH Error in receive frame length
APX_ERR_LPS_INVALID_SEQ Invalid loop port sequence number
APX_ERR_INVALID_NUM_PORTS Invalid number of ports
APX_ERR_INVALID_DIR_THRSH Invalid direction threshold parameter
APX_ERR_INVALID_DIR Invalid direction
APX_ERR_INVALID_PORT_THRSH Invalid port threshold parameter
APX_ERR_INVALID_CL_SCHD Invalid class scheduling parameter
APX_ERR_INVALID_CLASS_THRSH Invalid class threshold parameter
APX_ERR_INVALID_SHP_PARAM Invalid shaping parameter
APX_ERR_INVALID_CONN_THRSH Invalid connection threshold
APX_ERR_INVALID_WFQ_WT Invalid weight for WFQ connection



S/UNI-APEX (PM7326) Driver Manual
Appendix A: Driver Return Codes

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 139
Document ID: PMC-991727, Issue 1

Return Type Description

APX_ERR_INVALID_CONN_TYPE Invalid connection type



S/UNI-APEX (PM7326) Driver Manual
Appendix B: Coding Conventions

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 140
Document ID: PMC-991727, Issue 1

APPENDIX B: CODING CONVENTIONS

This section describes the coding and naming conventions used to implement the driver
software. This section also describes the variable types.

Variable Types

This section describes the variable types used by the driver code.

Table 24: Variable Type Definitions

Type Description

UINT1 unsigned integer – 1 byte
UINT2 unsigned integer – 2 bytes
UINT4 unsigned integer – 4 bytes
INT1 signed integer – 1 byte
INT2 signed integer – 2 bytes
INT4 signed integer – 4 bytes
void void

Naming Conventions

This section describes the naming conventions for the following items in the driver code:

• Macros

• Constants

• Structures

• Functions

• Variables



S/UNI-APEX (PM7326) Driver Manual
Appendix B: Coding Conventions

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 141
Document ID: PMC-991727, Issue 1

Table 25: Naming Conventions: Macros, Constants, and Structures

Type Example Case Prefix Notes

Macro mAPX_WRITE Lowercase “m” followed
by abbreviated, uppercase
device name: mAPX

Constant APX_REG Abbreviated, uppercase
device name: APX

Structure sAPX_DDB

Upper

Lowercase “s” followed
by abbreviated, uppercase
device name: sAPX

Separate words
with an
underscore “_”.



S/UNI-APEX (PM7326) Driver Manual
Appendix B: Coding Conventions

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 142
Document ID: PMC-991727, Issue 1

Table 26: Naming Conventions: Functions and Variables

Type Example Case Prefix Notes

API
Function

apexAdd() Full, lowercase
device name:
apex

Follow hungarian
notation. Do not
separate words.

Porting
Function

sysApexRawRead() Lowercase “sys”
followed by full,
title case device
name: sysApex

Porting functions
are all functions
that are platform
dependent.

Static
Function

qeIsConnShaped Static functions
are internal
functions and
have no special
naming
conventions other
than hungarian
notation.

Global
Variable

apexGdd Full, lowercase
device name:
apex

Standard
Variable

u1Type, u2Num,
u4Data, ret

Optionally
indicate variable
type using “u1, u2,
u4 etc”

No special
naming
conventions used

Pointer
to
Variable

pu4Data, psDdb,
pcb, ppTable

Title case, but
the first letter
is always
lowercase

Prefix single
pointers with
lowercase “p”
followed by the
unchanged
variable name.
Optionally, you
can prefix double
pointers with
lowercase “pp”
followed by the
unchanged
variable name.



S/UNI-APEX (PM7326) Driver Manual
Index

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 143
Document ID: PMC-991727, Issue 1

INDEX

A
AAL5, 21, 38, 45, 90, 91, 110, 111, 112
aliasing, 64, 65, 67
allocating memory, 54
apexActivate, 39, 70
apexAdd, 61, 116
apexAddDev, 142
apexBaseAddress, 142
apexCellBufTest, 67
apexClassDisable, 78
apexClassEnable, 78
apexClassSetup, 77
apexClassTeardown, 79
apexClrClassProfile, 59
apexClrConnProfile, 60
apexClrInitProfile, 56
apexClrPortProfile, 57
apexConnDisable, 83
apexConnEnable, 84
apexConnSetup, 82
apexConnTeardown, 84
apexCtxtMemCheck, 68
apexDeactivate, 70, 71
apexDelete, 61, 62
apexDPR, 119
apexExtQCtxtTest, 64
apexGetClassProfile, 58
apexGetCongClassCnt, 100
apexGetCongConnCnts, 101
apexGetCongDevCnt, 99
apexGetCongDirCnt, 99
apexGetCongPortCnt, 100
apexGetConnProfile, 60
apexGetDiscardCnts, 97
apexGetInitProfile, 56
apexGetIntCnts, 107
apexGetIntMsk, 106
apexGetPortProfile, 57
apexGetStatConnTxCnts, 98
apexGetStatDiscardCnts, 97
apexGetWdgPatrolRng, 88
apexHiDPR, 27, 28, 104, 113

apexHiISR, 27, 28, 102, 104, 118
apexInit, 69
apexIntCtrl, 106
apexIntQCtxtTest, 64
apexLoDPR, 28, 104, 114
apexLoISR, 27, 28, 103, 104, 119
apexLpsCtxtTest, 65
apexLpsGetPollSeq, 95
apexLpsGetPortWts, 94
apexLpsSetPollSeq, 94
apexLpsSetPortWts, 93
apexModuleInit, 54, 55, 56, 57, 58, 59,

61
apexModuleShutdown, 54
apexPortDisable, 73
apexPortEnable, 74
apexPortSetup, 71, 72
apexPortTeardown, 74, 75, 76, 80, 85,

86
apexRegisterTest, 63
apexReset, 68
apexResetIntCnts, 107, 108
apexSarRxTaskFn, 27, 28, 91, 127
apexSarTxTaskFn, 90, 91, 127
apexSetClassProfile, 58
apexSetConnProfile, 59
apexSetInitProfile, 55
apexSetIntMsk, 105
apexSetIntThresh, 108
apexSetPortProfile, 57
apexSetWdgPatrolRng, 87
apexShprSetup, 80, 81
apexShprTeardown, 81
apexTxCell, 89, 128
apexTxFrame, 128
apexTxFrm, 90
apexWatchdogPatrol, 88
apexWpsCtxtTest, 66
apexWpsGetPortWts, 96
apexWpsSetPortWts, 96
APX_ACTIVATE, 95



S/UNI-APEX (PM7326) Driver Manual
Index

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 144
Document ID: PMC-991727, Issue 1

APX_ACTIVE, 23, 42, 52, 67, 68, 70,
71, 72, 73, 74, 75, 76, 77, 78,
79, 80, 83, 84, 85, 86, 87, 88,
89, 90, 91, 92, 93, 94, 96, 97,
98, 99, 100, 101, 102, 103, 104,
105, 106, 107, 108, 109

APX_ALL_INTS, 105, 106
apx_api.h, 107, 129
apx_api1.c, 129
apx_api2.c, 129
APX_CSW_DEBUG, 132
apx_defs.h, 130
APX_DISABLE, 106
apx_eg.c, 129, 130, 132, 134
apx_eg.h, 130
APX_ENABLE, 106
apx_err.h, 130, 134
APX_ERR_BASE, 134
APX_ERR_CLASS_NOT_CFG, 78, 79
APX_ERR_CLASS_NOT_ENABLED,

83, 84, 136
APX_ERR_CLASS_NOT_FREE, 77,

136
APX_ERR_CONN_NOT_CFG, 83, 84,

85, 98
APX_ERR_CONN_NOT_FREE, 83
APX_ERR_DEV_ALREADY_ADDED,

61, 136
APX_ERR_DEV_NOT_DETECTED, 61,

136
APX_ERR_DEVS_FULL, 61, 136
APX_ERR_ICI_NOT_FREE, 83
APX_ERR_INVALID_ADDR, 65
APX_ERR_INVALID_CLASS, 58, 77,

78, 79, 101, 136
APX_ERR_INVALID_CLASS_ID, 77,

78, 79, 136
APX_ERR_INVALID_CLASS_VECTOR,

58, 77, 136
APX_ERR_INVALID_CONN_ID, 83, 136
APX_ERR_INVALID_CONN_VECTOR,

60, 83, 136
APX_ERR_INVALID_CTRL_PARAM,

107, 136

APX_ERR_INVALID_DEV, 62, 63, 64,
65, 66, 67, 68, 69, 70, 71, 72,
73, 74, 75, 76, 77, 78, 79, 80,
81, 82, 83, 84, 85, 86, 87, 88,
89, 90, 91, 92, 93, 94, 95, 96,
97, 98, 99, 100, 101, 102, 105,
106, 107, 108, 109, 136

APX_ERR_INVALID_FLAG, 107, 136
APX_ERR_INVALID_ICI, 83, 84, 85, 87,

98, 102
APX_ERR_INVALID_INIT_VECTOR,

55, 136
APX_ERR_INVALID_INT_TYPE, 109,

136
APX_ERR_INVALID_MSK_ID, 105, 136
APX_ERR_INVALID_PORT, 57, 73, 74,

75, 76, 94, 95, 96, 100, 136
APX_ERR_INVALID_PORT_ID, 72, 73,

74, 75, 76, 80, 85, 86, 87, 94,
95, 96, 136

APX_ERR_INVALID_PORT_VECTOR,
57, 73, 136

APX_ERR_INVALID_PROFILE, 56, 57,
58, 59, 60, 69, 73, 77, 83, 136

APX_ERR_INVALID_PROFILE_NUM,
56, 57, 58, 59, 60, 69, 73, 77,
83

APX_ERR_INVALID_RANGE, 87
APX_ERR_INVALID_SHPR_ID, 81, 82,

136
APX_ERR_INVALID_SHPR_VECTOR,

81, 136
APX_ERR_INVALID_STATE, 62, 63, 68,

69, 70, 71, 72, 73, 74, 75, 76,
77, 78, 79, 80, 81, 82, 83, 84,
85, 86, 87, 88, 89, 90, 91, 92,
93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 105, 106, 107, 108,
109, 136

APX_ERR_INVALID_TEST_PARAM,
64, 65, 66, 67, 136

APX_ERR_INVALID_VECTOR, 69
APX_ERR_MEM_ALLOC, 54, 55, 136
APX_ERR_MODULE_ALREADY_INIT,

54
APX_ERR_MODULE_NOT_INIT, 55,

56, 57, 58, 59, 60, 61, 136



S/UNI-APEX (PM7326) Driver Manual
Index

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 145
Document ID: PMC-991727, Issue 1

APX_ERR_POLL_TIMEOUT, 64, 65,
66, 67, 73, 74, 75, 76, 77, 78,
79, 80, 81, 82, 83, 84, 85, 86,
87, 88, 98, 137

APX_ERR_PORT_NOT_CFG, 74, 75,
76, 80, 85, 86, 87, 94, 95, 96,
137

APX_ERR_PORT_NOT_ENABLED, 77,
79, 83, 84, 137

APX_ERR_PORT_NOT_FREE, 72, 73,
137

APX_ERR_PROFILE_FULL, 55, 137
APX_ERR_PROFILE_VECTOR_BOTH

_VALID, 69, 73, 77, 83, 137
APX_ERR_SAR_RX_BUF_FULL, 92
APX_ERR_SAR_RX_CELL_BUF_FULL

, 110
APX_ERR_SAR_RX_CRC10_FAIL, 92,

110, 137
APX_ERR_SAR_RX_CRC32_FAIL, 112
APX_ERR_SAR_RX_FRM_BUF_FULL,

111, 112
APX_ERR_SAR_RX_FRM_LENGTH,

112
APX_ERR_SAR_RX_TIMEOUT, 112
APX_ERR_SAR_TX_BUSY, 91, 109,

111, 137
APX_ERR_SAR_TX_FRM_LENGTH,

90
APX_ERR_SAR_TX_MSG, 89, 137
APX_ERR_SAR_TX_NXT_FRM_BUF,

111
APX_ERR_SAR_TX_TYPE, 91, 137
APX_ERR_SHPR_NOT_FREE, 82, 137
APX_ERR_TEST_IN_PROGRESS, 68
APX_ERR_WDG_PTRL_BUSY, 88
APX_EVT_LR_PAR_ERR, 114
APX_EVT_LR_RUNT_CELL_ERR, 114
APX_EVT_LT_CELL_XF_ERR, 114
APX_EVT_Q_CELL_RX_ERR, 115
APX_EVT_Q_CLASS_MAX_THRESH_

ERR, 115
APX_EVT_Q_DIR_MAX_THRESH_ER

R, 115
APX_EVT_Q_FREE_CNT_ZERO_ERR,

114
APX_EVT_Q_PORT_MAX_THRESH_E

RR, 115

APX_EVT_Q_SHP0_ICTR_ERR, 115
APX_EVT_Q_SHP1_ICTR_ERR, 115
APX_EVT_Q_SHP2_ICTR_ERR, 115
APX_EVT_Q_SHP3_ICTR_ERR, 115
APX_EVT_Q_VC_MAX_THRESH_ERR

, 115
APX_EVT_Q_VC_REAS_LEN_ERR,

115
APX_EVT_Q_VC_REAS_TIME_ERR,

115
APX_EVT_SDRAM_CRC_ERR, 114
APX_EVT_SSRAM_PAR_ERR, 114
APX_EVT_WR_CELL_XF_ERR, 114
APX_EVT_WR_PAR_ERR, 114
APX_EVT_WR_RUNT_CELL_ERR, 114
APX_FAILURE, 63, 64, 65, 66, 67, 137
apx_fns.h, 130
APX_HI_INT, 105, 106, 108
apx_hw.c, 129, 131
apx_hw.h, 130, 131
apx_ici_rec, 29
APX_IND_INTR, 45
APX_IND_RX_CELL, 45
APX_IND_RX_FRM, 45
APX_IND_TX_CELL, 45
APX_IND_TX_FRM, 45
APX_INVALID, 45, 46, 47, 48, 67
APX_INVALID_TEST_PARAM, 67
apx_io.c, 129
apx_ism.c, 129
APX_LO_ERR_INT, 108
APX_LO_ERROR_INT, 105, 106
APX_LO_STAT_INT, 105, 106
APX_LOOP_INVALID_SEQ, 95
APX_LOOP_INVALID_WT, 94
APX_LOOP_PORT, 49, 50
apx_lps.c, 129
APX_MAX_CELL_BUFS, 131
APX_MAX_DEVS, 131
APX_MAX_NUM_VCS, 31, 131
APX_MAX_POLL_TRIES, 131, 132
APX_NUM_CLASSES, 30
APX_NUM_LOOP_PORTS, 31
APX_NUM_PORT_TYPES, 31
APX_NUM_WAN_PORTS, 31
APX_POLL_DELAY, 131, 132



S/UNI-APEX (PM7326) Driver Manual
Index

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 146
Document ID: PMC-991727, Issue 1

apx_poll_seq_rec, 34
APX_PORT_DISABLE_DELAY_MSECS

, 131
APX_PRESENT, 23, 42, 61, 62, 63, 64,

65, 66, 67, 69, 70
apx_prof.c, 129
apx_prt_class_rec, 30
apx_prt_class_tbl, 31
apx_qe.c, 129
apx_qe_cb, 31
APX_REG, 141
apx_rtos.c, 129, 133
apx_rtos.h, 130, 132
apx_sar.c, 129
APX_SDRAM_REFRESH_RT, 131
APX_SEM_ID, 41
apx_stat.c, 129
apx_strs.h, 130
APX_SUCCESS, 54, 55, 56, 57, 58, 59,

60, 61, 62, 63, 64, 65, 66, 67,
68, 69, 70, 71, 72, 73, 74, 75,
76, 77, 78, 79, 80, 81, 82, 83,
84, 85, 86, 87, 88, 89, 90, 91,
92, 93, 94, 95, 96, 97, 98, 99,
100, 101, 102, 104, 105, 106,
107, 108, 109, 137

APX_TX_CTXT, 91
apx_typs.h, 130
APX_UP_PORT, 49, 50
APX_USR_CTXT, 43, 61, 117, 135
apx_util.c, 129
APX_VALID, 42, 45, 46, 47, 48
APX_WAN_PORT, 49, 50
APX_WPS_INVALID_WT, 96
apxSarRx, 126, 127
apxSarTx, 126, 127

B
baseAddress, 142

C
CB_DIAG_DISABLED, 43
CB_DIAG_READ, 43
CB_DIAG_WRITE, 43
cellInfo, 91
ClassCnt, 131
classNum, 115

CLP0, 46, 47, 97, 98, 101
CLP01, 101
CLP1, 46, 47, 97, 98
congestion counts, 22, 97
conn, 29, 30
CRC, 89, 90
CRC10, 110
CRC32, 112

D
data structures, 2, 29, 33, 41, 54, 129,

130
deleting devices, 25
deregisters, 42
dest, 132
device information structure, 52
driver functions, 23
driver library, 17, 20, 135

E
eAPX_DEV_STATE, 42
eAPX_Q_TYPE, 48
eAPX_SAR_TX_TYPE, 53
ECI, 43, 52, 111
eDevState, 42
EFCI, 47
egApexIndRxFrm, 135
eng, 1
eQtype, 48
eventId, 113, 114

F
FCQ, 48
FreeCnt, 99
frmInfo, 91

G
GFR, 47

H
hardware interface, 18
HEC, 43, 52, 53
HSS, 4
hungarian, 142

I
i4Key, 126



S/UNI-APEX (PM7326) Driver Manual
Index

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 147
Document ID: PMC-991727, Issue 1

i4Result, 135
ICI, 29, 31, 50, 51, 83, 84, 87, 88, 89,

90, 98, 101, 109, 110, 111, 112,
113, 114, 115

ICIs, 88
inc, 15, 129
include files, 15, 129
indCritical, 27, 45, 104, 108, 113, 135
indError, 28, 45, 104, 108, 113, 114, 135
indication callback functions, 15, 27, 134
indRxCell, 45, 91, 110, 134, 135
indRxFrm, 45, 91, 111, 134
indTxCell, 45, 89, 90, 109, 135
indTxFrm, 45, 90, 110, 135
Input/Output, 21, 129
input/output component, 21
interrupt service model, 26
interrupt servicing, 20
IRQ, 42, 117, 118, 119, 131

L
loop port scheduler, 21, 32
loopCnt, 115
lp, 31
LPS, 21, 32, 33, 35, 44, 46, 65, 66, 93,

94, 95

M
makefile, 129
mAPX, 141
mAPX_WRITE, 141
module information structure, 51
MpIdle, 105

N
numICIs, 30

O
OAM, 47, 110

P
pApex, 61
pbaseAddress, 142
PCI, 42, 117
PDU, 90
pHdr, 121
PM7326, 1, 2

poll sequence database, 33, 34, 36
port sequence structure, 51
port sequence table, 32, 33, 36, 37, 95
port weight structure, 50
PortCnt, 131
portNum, 115
portType, 115
ppbaseAddress, 142
ppsHdr, 121, 122
ppSysInfo, 117
ppu1Buf, 122
ppu1Pyld, 121, 122
prec, 31
prepend, 43, 52, 53
prev, 29, 30
psClassId, 77, 78, 79, 100, 101
psClassProfs, 42
psClassVect, 77
psConnId, 82
psConnProfs, 42
psConnVect, 82
psDdb, 41, 117, 118
psHdr, 89, 90, 109, 110, 111, 112, 121,

135
psIciLstHead, 30
psIciLstTail, 30
psInitProfs, 41
psInitVect, 69
psMiv, 54
psMskVal, 105, 106
psPattern, 64, 65
psPortId, 72, 73, 74, 75, 100
psPortProfs, 42
psPortSeqTable, 94, 95
psPortVect, 72, 73
psPortWtTable, 93, 94, 96, 97
psProfile, 55, 56, 57, 58, 59, 60
psPyld, 109, 110, 111
psShprVect, 81
pSysInfo, 42
pu1Buf, 122
pu1First, 120
pu1FirstBuf, 123
pu1Frm, 90, 110, 111, 112, 135
pu1PrevBuf, 122, 123
pu1Pyld, 89, 109, 110, 121, 135



S/UNI-APEX (PM7326) Driver Manual
Index

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 148
Document ID: PMC-991727, Issue 1

pu2EndICI, 87, 88
pu2StartICI, 87, 88
pu4BaseAddr, 117
pu4Clp0DiscardCnt, 97, 98
pu4Clp1DiscardCnt, 97, 98
pu4Cnt, 99, 100, 101
pu4DiscardCnt, 97, 98
pu4Err, 103
pu4HiCnts, 107
pu4LoErrCnts, 107
pu4ProfileNum, 55, 57, 58, 59, 60
pu4Size, 123
pu4Stat, 102, 103
pu4VcClassQClp01Cnt, 101
pu4VcClp0Cnt, 101
pu4VcClp0TxCnt, 98
pu4VcClp1TxCnt, 98
pu4VcQClp01Cnt, 101

Q
queue control block, 31
queue engine functions, 20, 71
queue-module information structure, 51

R
remap, 48
remapping, 47

S
sAPX, 29, 30, 31, 34, 41, 42, 43, 44, 45,

46, 47, 48, 49, 50, 51, 52, 53,
54, 55, 56, 57, 58, 59, 60, 64,
69, 72, 73, 74, 75, 77, 78, 79,
81, 82, 89, 90, 93, 94, 95, 96,
100, 105, 106, 109, 110, 111,
117, 118, 121, 122, 128, 135,
141

sAPX_CELL_HDR, 89, 90, 109, 110,
111, 121, 122, 135

sAPX_CELL_INFO, 53
sAPX_CLASS_ID, 49, 77, 78, 79, 100
sAPX_CLASS_VECT, 42, 46, 58, 77
sAPX_CONN_ID, 50, 82
sAPX_CONN_VECT, 42, 47, 59, 60, 82
sAPX_CS_VECT, 46
sAPX_CTXT_IMG, 43
sAPX_DATA34, 64

sAPX_DDB, 41, 42, 117, 118, 141
sAPX_DEV_INFO, 52
sAPX_FRM_INFO, 53
sAPX_GDD, 41
sAPX_ICI_REC, 29, 30, 31
sAPX_INIT_VECT, 41, 43, 44, 45, 55,

56, 69
sAPX_INTS, 105, 106
sAPX_ISM_CB, 44
sAPX_LPS_CB, 44
sAPX_MIV, 41, 44, 54
sAPX_MODULE_INFO, 51
sAPX_POLL_SEQ_REC, 34
sAPX_PORT_ID, 49, 72, 73, 74, 75, 100
sAPX_PORT_SEQ, 51, 94, 95
sAPX_PORT_VECT, 42, 46, 57, 72
sAPX_PORT_WT, 50, 93, 94, 96
sAPX_PRT_CLASS_REC, 30, 31
sAPX_PRT_CLASS_TBL, 31
sAPX_QE_CB, 31, 44
sAPX_QE_INFO, 51
sAPX_REGS, 45
sAPX_SAR_CB, 44
sAPX_SEQ_WT, 51
sAPX_SHPR_VECT, 48, 81
sAPX_TX_CTXT, 53, 128
sAPX_VC_REMAP, 48
SarRxEmpty, 105
SarRxMsgQ, 126, 127
SarRxRdy, 105
SarTxMsgQ, 126, 127, 128
sCschd, 46
sCtxt, 43
SDRAM, 67, 131
semApex, 41
semId, 124, 125
SFQ, 48, 82
sIciTbl, 31
sInitVect, 43
sIsmCb, 44
sLpsCb, 44
sMiv, 41
software states, 22
software_pd, 1
source files, 15, 129, 135
sPrtClTbl, 31



S/UNI-APEX (PM7326) Driver Manual
Index

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 149
Document ID: PMC-991727, Issue 1

sQeCb, 44
src, 15, 129
sRegs, 45
sRemap, 48
sSarCb, 44
SSRAM, 64
statistical counts, 97
statistics component, 19, 22
struct, 29, 30, 31, 34
sTxCtxt, 91
sTxMsg, 128
sysApex, 26, 142
sysApexAllocCellBuf, 121, 132
sysApexAllocFrmBuf, 121, 122, 132
sysApexAllocNxtFrmBuf, 122, 132
sysApexBusyBitPoll, 132
sysApexDebugRead, 132
sysApexDebugWrite, 132
sysApexDeviceDetect, 116, 117, 131
sysApexDPRtask, 27, 28, 104, 118, 119
sysApexDPRtaskFn, 119
sysApexDPRTaskFn, 133
sysApexFreeCell, 121, 132
sysApexFreeFrm, 123, 133
sysApexGetFrmBufSz, 122, 132
sysApexGetNxtFrmBuf, 123, 132
sysApexHiIntHandler, 26, 27, 28, 102,

117, 118, 133
sysApexIntInstallHandler, 28, 117, 131,

133
sysApexIntRemoveHandler, 28, 118,

133
sysApexLoIntHandler, 26, 27, 28, 103,

117, 118, 119, 127, 133
sysApexMemAlloc, 120, 132
sysApexMemCmp, 132
sysApexMemCpy, 132
sysApexMemFree, 120, 132
sysApexMemSet, 132
sysApexPreemptDis, 125, 126, 134
sysApexPreemptEn, 126, 134
sysApexRawRead, 116, 130, 142
sysApexRawWrite, 116, 130
sysApexSarInstall, 126, 133
sysApexSarRemove, 127, 133
sysApexSarRxTask, 119, 127

sysApexSarRxTaskFn, 27, 91, 127, 134
sysApexSarTaskFn, 27
sysApexSarTxMsg, 128, 134
sysApexSarTxTaskFn, 90, 127, 134
sysApexSemCreate, 124, 133
sysApexSemDelete, 124, 133
sysApexSemGive, 125, 133
sysApexSemTake, 125, 133
sysApexTaskDelay, 123, 134
sysApexTrace, 132

T
teardown, 71
transmitting cells, 39
txInfo, 53
TxSlot, 43, 52
txtype, 137
txType, 53, 91
typedef, 29, 30, 31, 34

U
u1Class, 48, 49, 50
u1Clp0MinThrsh, 47
u1Clp0Thrsh, 46, 47
u1Clp1Thrsh, 46, 47
u1CrcFlg, 89
u1Ctrl, 105, 106
u1Ctxt, 65, 66
u1Dir, 99
u1EfciMd, 47
u1EndSegOam, 47
u1enflg, 136
u1EnFlg, 106
u1EvtId, 108
u1GfrMd, 47
u1inttype, 136
u1IntType, 108
u1LpTxECIPreEn, 43, 52
u1LpTxHecDis, 43, 52
u1MaxThrsh, 46, 47
u1MeasInt, 48
u1Port, 48
u1PortSeq, 34, 51
u1PortWt, 34, 50
u1RedFact, 48
u1SarRxPri, 45



S/UNI-APEX (PM7326) Driver Manual
Index

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 150
Document ID: PMC-991727, Issue 1

u1ShpFlg, 46
u1ShprId, 81
u1SlowDnEn, 48
u1TestType, 64, 65, 66, 67
u1ThrshEn, 48
u1ThrshVal, 48
u1Type, 49, 50
u1Valid, 46, 48
u1VcVpc, 47
u1WanTxECIPreEn, 43, 52
u1WanTxHecDis, 43, 53
u2ClCfgCnt, 31, 51
u2EndICI, 87
u2LpTxSwPreEn, 43, 53
u2MaxDevs, 41
u2MaxInitProfs, 44
u2MaxPortProfs, 44
u2Num, 49
u2NumDevs, 41, 51
u2NumDevsActive, 41, 52
u2Port, 50
u2PortNum, 34, 50, 51
u2PrtCfgCnt, 31, 51
u2StartICI, 87
u2Thrsh, 108
u2Type, 49
u2WanTxSwPreEn, 43, 53
u2WdgEndIci, 31, 51
u2WdgStartIci, 31, 51
u4Arg1, 113, 114, 115, 135
u4Arg2, 113, 114, 115, 135
u4Arg3, 113, 114, 115, 135
u4BaseAddr, 42, 52
u4Bytes, 120
u4CbDiagMd, 43, 52
u4CellStartAddr, 43, 52, 67
u4ConnCfgCnt, 31, 51
u4DevState, 52
u4ECI, 110, 111, 112, 135
u4Err, 104
u4EventId, 113, 114, 115, 135
u4ICI, 50, 83, 84, 89, 90, 98, 101, 109,

110, 111, 113, 135
u4ImgRd, 41, 52
u4IntId, 118, 119
u4Len, 90, 111, 112

u4Length, 135
u4LpClStartAddr, 52
u4MaxCellBufs, 43, 45, 52
u4MaxClassProfs, 44
u4MaxConnProfs, 44
u4MaxVCs, 43, 45, 52
u4MemSz, 41, 52
u4Mode, 41, 52
u4Msecs, 123, 124
u4NumCells, 67
u4NumPorts, 93, 94, 95, 96
u4Pattern, 65, 66, 67
u4PollSeq, 46
u4PollWt, 46
u4PortStart, 94, 95
u4ProfileNum, 56, 57, 58, 59, 60, 69,

72, 73, 77, 82
u4QLClsStartAddr, 43
u4QuadNum, 64, 65
u4QuadStart, 64, 65
u4RemapMd, 47
u4RtRate, 48
u4ShprStartAddr, 43, 52
u4Size, 122
u4Stat, 104
u4Valid, 42, 45, 46, 47
uAPX_VC_Q_INFO, 48
UDF, 43, 52, 53
uP, 20, 31, 42, 45, 47, 49, 50, 51, 100
uQinfo, 48
USR_CTXT, 109, 110, 111, 113, 114

V
variable type definitions, 130
variable types, 140
VC, 28, 29, 47, 48, 82, 88, 101, 131
VcClassQClp01Cnt, 131
VcClassQCLP01Cnt, 101
VcCLP0Cnt, 101
VcQCLP01Cnt, 101
VCs, 29, 43, 45, 48, 52, 88
VPC, 47

W
wanCnt, 115
WFQ, 48



S/UNI-APEX (PM7326) Driver Manual
Index

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 151
Document ID: PMC-991727, Issue 1

wp, 31
WPS, 21, 46, 66, 96
WrRd, 64, 65, 66

Z
ZBT, 64


