

March 1999 Revised November 2000

74LVT573 • 74LVTH573 Low Voltage Octal Transparent Latch with 3-STATE Outputs

General Description

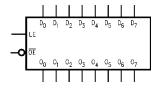
The LVT573 and LVTH573 consist of eight latches with 3-STATE outputs for bus organized system applications. The latches appear transparent to the data when Latch Enable (LE) is HIGH. When LE is low, the data satisfying the input timing requirements is latched. Data appears on the bus when the Output Enable (\overline{OE}) is LOW. When \overline{OE} is HIGH, the bus output is in the high impedance state.

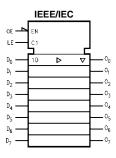
The LVTH573 data inputs include bushold, eliminating the need for external pull-up resistors to hold unused inputs.

These octal latches are designed for low-voltage (3.3V) V_{CC} applications, but with the capability to provide a TTL interface to a 5V environment. The LVT573 and LVTH573 are fabricated with an advanced BiCMOS technology to achieve high speed operation similar to 5V ABT while maintaining a low power dissipation.

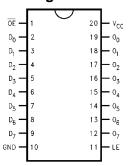
Features

- \blacksquare Input and output interface capability to systems at 5V V_{CC}
- Bushold data inputs eliminate the need for external pull-up resistors to hold unused inputs (74LVTH573), also available without bushold feature (74LVT573).
- Live insertion/extraction permitted
- Power Up/Down high impedance provides glitch-free bus loading
- Outputs source/sink -32 mA/+64 mA
- Functionally compatible with the 74 series 573
- Latch-up performance exceeds 500 mA
- ESD performance:


Human-body model > 2000V Machine model > 200V Charged-device model > 1000V


Ordering Code:

	_	
Order Number	Package Number	Package Description
74LVT573WM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
74LVT573SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74LVT573MSA	MSA20	20-Lead Shrink Small Outline Package (SSOP), EIAJ TYPE II, 5.3mm Wide
74LVT573MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74LVTH573WM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
74LVTH573SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74LVTH573MSA	MSA20	20-Lead Shrink Small Outline Package (SSOP), EIAJ TYPE II, 5.3mm Wide
74LVTH573MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide


Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

Logic Symbols

Connection Diagram

Pin Descriptions

Pin Names	Description
D ₀ –D ₇	Data Inputs
LE	Latch Enable Input
ŌĒ	Output Enable Input
O ₀ -O ₇	3-STATE Latch Outputs

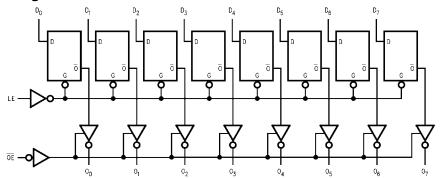
Truth Table

	Inputs				
LE	ŌĒ	D _n	On		
Х	Н	Х	Z		
Н	L	L	L		
Н	L	Н	Н		
L	L	Х	O ₀		

H = HIGH Voltage Level

L = LOW Voltage Level

Z = High Impedance


X = Immaterial

O₀ = Previous O₀ before HIGH to LOW transition of Latch Enable

Functional Description

The LVT573 and LVTH573 contain eight D-type latches with 3-STATE standard outputs. When the Latch Enable (LE) input is HIGH, data on the D_n inputs enters the latches. In this condition the latches are transparent, i.e., a latch output will change state each time its D-type input changes. When LE is LOW, the latches store the information that was present on the D-type inputs a setup time preceding the HIGH-to-LOW transition of LE. The 3-STATE standard outputs are controlled by the Output Enable (\overline{OE}) input. When \overline{OE} is LOW, the standard outputs are in the 2-state mode. When \overline{OE} is HIGH, the standard outputs are in the high impedance mode but this does not interfere with entering new data into the latches.

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays

Absolute Maximum Ratings(Note 1) Units Symbol Parameter Value Conditions ٧ -0.5 to +4.6 Supply Voltage V_{CC} ٧ -0.5 to +7.0 V_{I} DC Input Voltage Vo DC Output Voltage -0.5 to +7.0 Output in 3-STATE ٧ Output in High or Low State (Note 2) -0.5 to +7.0 DC Input Diode Current -50 V_I < GND mΑ I_{IK} V_O < GND DC Output Diode Current -50 mΑ lok DC Output Current 64 V_O > V_{CC} Output at High State mΑ 128 V_O > V_{CC} Output at Low State Icc DC Supply Current per Supply Pin ±64 mΑ DC Ground Current per Ground Pin ±128 mΑ I_{GND} Storage Temperature -65 to +150 °C T_{STG}

Recommended Operating Conditions

Symbol	Parameter	Min	Max	Units
V _{CC}	Supply Voltage	2.7	3.6	V
VI	Input Voltage	0	5.5	V
I _{OH}	High-Level Output Current		-32	mA
I _{OL}	Low-Level Output Current		64	mA
T _A	Free-Air Operating Temperature	-40	85	°C
Δt/ΔV	Input Edge Rate, V _{IN} = 0.8V–2.0V, V _{CC} = 3.0V	0	10	ns/V

Note 1: Absolute Maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute maximum rated conditions is not implied.

Note 2: Io Absolute Maximum Rating must be observed.

DC Electrical Characteristics

	Parameter		.,	T A =	-40°C to +	85°C		
Symbol			V _{CC} (V)	Min	Typ (Note 3)	Max	Units	Conditions
V _{IK}	Input Clamp Diode Voltage		2.7			-1.2	V	I _I = -18 mA
V _{IH}	Input HIGH Voltage		2.7-3.6	2.0			V	$V_0 \le 0.1V$ or
V _{IL}	Input LOW Voltage		2.7-3.6			0.8	V	$V_O \ge V_{CC} - 0.1V$
V _{OH}	Output HIGH Voltage		2.7-3.6	V _{CC} - 0.2				$I_{OH} = -100 \mu A$
			2.7	2.4			V	$I_{OH} = -8 \text{ mA}$
			3.0	2.0				I _{OH} = -32 mA
V _{OL}	Output LOW Voltage		2.7			0.2		$I_{OL} = 100 \mu A$
			2.7			0.5		I _{OL} = 24 mA
			3.0			0.4	V	I _{OL} = 16 mA
			3.0			0.5		I _{OL} = 32 mA
			3.0			0.55		I _{OL} = 64 mA
I _{I(HOLD)}	Bushold Input Minimum	Drive	3.0	75			μА	$V_{I} = 0.8V$
(Note 4)				-75			μΑ	$V_1 = 2.0V$
I _{I(OD)}	Bushold Input Over-Driv	ve	3.0	500			μА	(Note 5)
(Note 4)	Current to Change State	е		-500				(Note 6)
I _I	Input Current		3.6			10		$V_1 = 5.5V$
		Control Pins	3.6			±1	μА	$V_I = 0V \text{ or } V_{CC}$
		Data Pins	3.6			-5	μι	$V_I = 0V$
		Data i ilis	3.0			1		$V_I = V_{CC}$
I _{OFF}	Power Off Leakage Current		0			±100	μΑ	$0V \le V_I \text{ or } V_O \le 5.5V$
I _{PU/PD}	Power Up/Down 3-STATE Output Current		0-1.5V			±100	μА	$V_O = 0.5V$ to 3.0V $V_I = GND$ or V_{CC}
I _{OZL}	3-STATE Output Leaka	ge Current	3.6			-5	μА	V _O = 0.5V
I _{OZH}	3-STATE Output Leaka	ge Current	3.6			5	μΑ	V _O = 3.0V

DC Electrical Characteristics (Continued)

		V	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$				
Symbol	Parameter	V _{CC} (V)	Min	Typ (Note 3)	Max	Units	Conditions
I _{OZH} +	3-STATE Output Leakage Current	3.6			10	μΑ	$V_{CC} < V_O \le 5.5V$
I _{CCH}	Power Supply Current	3.6			0.19	mA	Outputs HIGH
I _{CCL}	Power Supply Current	3.6			5	mA	Outputs LOW
I _{CCZ}	Power Supply Current	3.6			0.19	mA	Outputs Disabled
I _{CCZ} +	Power Supply Current	3.6			0.19	mA	V _{CC} ≤ V _O ≤ 5.5V, Outputs Disabled
ΔI_{CC}	Increase in Power Supply Current (Note 7)	3.6			0.2	mA	One Input at V _{CC} – 0.6V Other Inputs at V _{CC} or GND

Note 3: All typical values are at V_{CC} = 3.3V, T_A = 25°C.

Note 4: Applies to bushold versions only (74LVTH573).

Note 5: An external driver must source at least the specified current to switch from LOW-to-HIGH.

Note 6: An external driver must sink at least the specified current to switch from HIGH-to-LOW.

Note 7: This is the increase in supply current for each input that is at the specified voltage level rather than V_{CC} or GND.

Dynamic Switching Characteristics (Note 8)

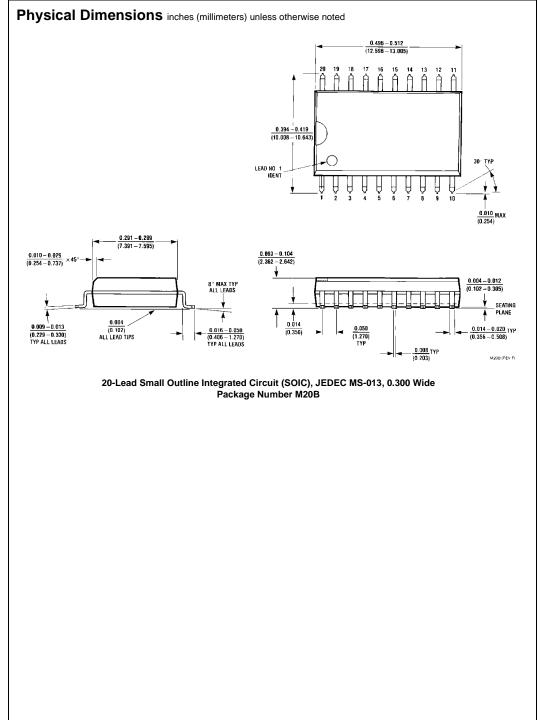
6.	Symbol	Parameter	V _{CC}	T _A = 25°C			Units	Conditions	
	Syllibol	Farameter	(V)	Min	Тур	Max	Units	$C_L = 50$ pF, $R_L = 500\Omega$	
	V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	3.3		0.8		V	(Note 9)	
	V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	3.3		-0.8		V	(Note 9)	

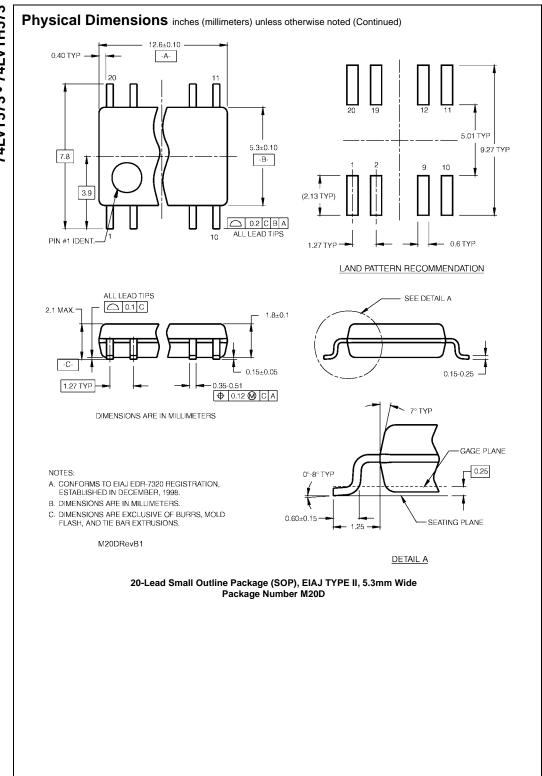
Note 8: Characterized in SOIC package. Guaranteed parameter, but not tested.

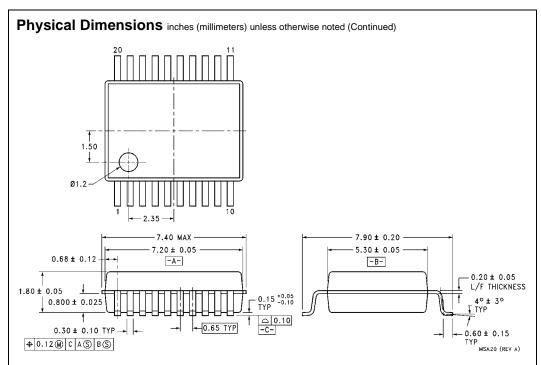
Note 9: Max number of outputs defined as (n). n-1 data inputs are driven 0V to 3V. Output under test held LOW.

AC Electrical Characteristics

		$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$ $C_L = 50 \text{ pF, } R_L = 500\Omega$						
Symbol	Parameter		$V_{CC} = 3.3V \pm 0.3$	V	$V_{CC} = 2.7V$		Units	
		Min	Typ (Note 10)	Max	Min	Max		
t _{PHL}	Propagation Delay	1.5		4.4	1.5	4.9	ns	
t _{PLH}	D _n to O _n	1.5		4.1	1.5	4.7	115	
t _{PHL}	Propagation Delay	1.9		4.4	1.9	4.9	ns	
t _{PLH}	LE to O _n	1.9		4.4	1.9	5.0	115	
t _{PZL}	Output Enable Time	1.5		5.1	1.5	6.6	ns	
t _{PZH}		1.5		5.1	1.5	5.9	115	
t _{PLZ}	Output Disable Time	2.0		4.6	2.0	4.9		
t _{PHZ}		2.0		4.9	2.0	5.5	ns	
t _S	Setup Time, D _n to LE	0.7			0.6		ns	
t _H	Hold Time, D _n to LE	1.5			1.7		ns	
t _W	LE Pulse Width	3.0			3.0		ns	
t _{OSHL}	Output to Output Skew (Note 11)		1	1.0		1.0	ns	
t _{OSLH}				1.0		1.0	115	


Note 10: All typical values are at $V_{CC} = 3.3V$, $T_A = 25$ °C.


Note 11: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}).


Capacitance (Note 12)

Symbol	Parameter	Conditions	Typical	Units
C _{IN}	Input Capacitance	$V_{CC} = Open, V_I = 0V \text{ or } V_{CC}$	4	pF
C _{OUT}	Output Capacitance	$V_{CC} = 3.0V$, $V_O = 0V$ or V_{CC}	6	pF

Note 12: Capacitance is measured at frequency f = 1 MHz, per MIL-STD-883, Method 3012.

20-Lead Shrink Small Outline Package (SSOP), EIAJ TYPE II, 5.3mm Wide Package Number MSA20

Physical Dimensions inches (millimeters) unless otherwise noted (Continued) -A-4.16 7.72 4.4±0.1 -B-6.4 3.2 0.2 C B A ALL LEAD TIPS PIN #1 IDENT LAND PATTERN RECOMMENDATION □ 0.1 C SEE DETAIL A 0.90+0.15 0.09-0.20 -C-0.1±0.05 0.65 12.00° 0.10 M A B C DIMENSIONS ARE IN MILLIMETERS R0.09 MIN GAGE PLANE NOTES: A. CONFORMS TO JEDEC REGISTRATION MO-153, VARIATION AC, REF NOTE 6, DATE 7/93. B. DIMENSIONS ARE IN MILLIMETERS. C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS. SEATING PLANE 0.6 ± 0.1 R0.09 MIN D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1982. 1.00 MTC20RevD1 DETAIL A 20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC20

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com