
 AAL1gator-32/-8/-4 Driver User’s Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3

PM73122, PM73123, PM73124

AAL1GATOR-32/-8/-4

DRIVER USER'S MANUAL

PROPRIETARY AND CONFIDENTIAL
RELEASE

ISSUE 3: AUGUST, 2001

 AAL1gator-32/-8/-4 Driver User’s Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 4

ABOUT THIS MANUAL AND AAL1GATOR-32/-8/-4
This manual describes the AAL1gator-32/-8/-4 device driver. It describes the driver’s
functions, data structures, and architecture. This manual focuses on the driver’s interfaces
to the application code, real-time operating system, and to the AAL1gator-32/-8/-4
device. It also describes in general terms how to modify and port the driver to your
software and hardware platform.

The AAL1gator-32/-8/-4 Device Driver will support the AAL1gator-32 (PM73122),
AAL1gator-8 (PM73123), and AAL1gator-4 (PM73124) devices. The Device Driver
identifies which of the three Devices is installed and performs its functions accordingly.
In systems with more than one Device, any combination of the three supported Devices is
allowed.

The abbreviation used in this user’s manual for the AAL1gator-32/-8/-4 is ‘AAL1gator-
32’. Constants are prefixed with ‘AL3_’ and APIs are prefixed with ‘al3’ (e.g.
al3ModuleOpen()).

Audience

This manual is written for people who need to:

�� Evaluate and test the AAL1gator-32/-8/-4 devices.

�� Modify and add to the AAL1gator-32/-8/-4 driver functions.

�� Port the AAL1gator-32/-8/-4 driver to a particular platform.

References

For more information about the AAL1gator-32 driver, see the driver’s release notes. For
more information about the AAL1gator-32, AAL1gator-8, and AAL1gator-4 devices, see
the documents listed in the table below and any related errata documents.

Table 1: Related Documents

Document Number Document Name

PMC-2000024 AAL1gator Product Family Technical Overview

PMC-2000088 AAL1gator White Paper (Network Convergence Of
Voice, Data And Video)

PMC-1981419 AAL1gator-32 Data Sheet

PMC-1991271 AAL1gator-32 Short Form Data Sheet

 AAL1gator-32/-8/-4 Driver User’s Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 5

Document Number Document Name

PMC-1990887 AAL1gator-32 Reference Design

PMC-2000097 AAL1gator-8 Data Sheet

PMC-1991272 AAL1gator-8 Short Form Data Sheet

PMC-1991089 AAL1gator-8 Paper Reference Design

PMC-2000095 AAL1gator-8/-4 Designs Application Note

PMC-1991273 AAL1gator-4 Short Form Data Sheet

PMC-1991820 AAL1gator-32/8/4 Programmer's Guide

Note: Ensure that you use the document that PMC-Sierra issued for your version of the
device and driver.

Revision History

Issue No. Issue Date Details of Change

Issue 1 May, 2000 Document created

Issue 2 June 2001 Idle Channel Detection parameters
changed for proper configuration.

Interrupt and Deferred Processing vectors
changed to reflect new Interrupt
processing architecture.

Added busMaster and twoC1FPEnable to
SBI bus configuration.

Added shiftCAS to Line Configuration.

Fixed typographical errors.

Issue 3 August,
2001

Change Product Status from Preliminary
to Release

 AAL1gator-32/-8/-4 Driver User’s Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 6

Legal Issues

None of the information contained in this document constitutes an express or implied
warranty by PMC-Sierra, Inc. as to the sufficiency, fitness or suitability for a particular
purpose of any such information or the fitness, or suitability for a particular purpose,
merchantability, performance, compatibility with other parts or systems, of any of the
products of PMC-Sierra, Inc., or any portion thereof, referred to in this document.
PMC-Sierra, Inc. expressly disclaims all representations and warranties of any kind
regarding the contents or use of the information, including, but not limited to, express and
implied warranties of accuracy, completeness, merchantability, fitness for a particular
use, or non-infringement.

In no event will PMC-Sierra, Inc. be liable for any direct, indirect, special, incidental or
consequential damages, including, but not limited to, lost profits, lost business or lost
data resulting from any use of or reliance upon the information, whether or not
PMC-Sierra, Inc. has been advised of the possibility of such damage.

The information is proprietary and confidential to PMC-Sierra, Inc., and for its
customers’ internal use. In any event, you cannot reproduce any part of this document, in
any form, without the express written consent of PMC-Sierra, Inc.

© 2001 PMC-Sierra, Inc.

PMC-1991444 (P2), ref PMC-990901 (P1)

Contacting PMC-Sierra

PMC-Sierra, Inc.
105-8555 Baxter Place Burnaby, BC
Canada V5A 4V7

Tel: (604) 415-6000
Fax: (604) 415-6200

Document Information: document@pmc-sierra.com
Corporate Information: info@pmc-sierra.com
Technical Support: apps@pmc-sierra.com
Web Site: http://www.pmc-sierra.com

 AAL1gator-32/-8/-4 Driver User’s Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 7

TABLE OF CONTENTS

About this Manual and AAL1gator-32/-8/-4... 4

Table of Contents .. 7

List of Figures.. 13

List of Tables ... 14

1 Driver Porting Quick Start ... 16

2 Driver Functions and Features ... 17

3 Software Architecture ... 18

3.1 Driver Interfaces ... 18

3.2 Application Programming Interface .. 18
Driver API ... 19
Alarms and Statistics .. 19
AAL1 Channel Configuration.. 19
UTOPIA/Any-PHY Configuration.. 20
RAM Configuration ... 20
SBI Bus Configuration.. 20
Direct Line Configuration.. 20

3.3 Real Time Operating System.. 20

3.4 Driver Hardware Interface... 21

3.5 Main Components... 22
Driver Library Module... 23
Device Data-Block Module... 23
Interrupt-Service Routine Module .. 23
Deferred-Processing Routine Module .. 24

3.6 Software State Description ... 25

3.7 Module States ... 26
Start .. 26
Idle 26
Ready ... 26

3.8 Device States .. 26
Start .. 26
Present ... 26
Active.. 27
Inactive ... 27

3.9 Processing Flows.. 27
Module Management ... 27
Device Management .. 28

 AAL1gator-32/-8/-4 Driver User’s Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 8

3.10 Interrupt Servicing... 29
Calling al3ISR... 30
Calling al3DPR... 30

3.11 Polling 31

3.12 Device Configuration .. 32
AAL1 Channel Configuration.. 32
UTOPIA/Any-PHY Bus Configuration .. 33
RAM Interface Configuration.. 35
SBI Bus Configuration.. 35
Direct Line Interface Configuration... 35
Alarms and Statistics .. 36

3.13 Constants.. 36

3.14 Variables ... 37

4 Data Structures... 39

4.1 Data Structures ... 39
AAL1 Channel Configuration Tables .. 39
UTOPIA/Any-PHY Bus Configuration Table... 41
RAM Interface Configuration Table .. 42
SBI Bus Configuration Tables .. 43
Direct Line Interface Configuration Table ... 44

4.2 Structures Passed by the Application ... 44
Module Initialization Vector .. 44
Initialization Profile ... 45
AAL1 Channel Configration Parameters.. 50
Counter Specification ... 52
Sticky Bit Error Word .. 52
ISR Enable/Disable Mask .. 53

4.3 Structures in the Driver’s Allocated Memory... 55
Module Data Block ... 55
Device Data Block .. 56
Module Status Block... 58
Device Status Block.. 58

4.4 Structures Passed Through RTOS Buffers... 59
Interrupt Service Vector.. 59
Deferred Processing Vector ... 60

5 Application Programming Interface .. 61

5.1 Module Initialization .. 61
Opening Modules: al3ModuleOpen.. 61
Closing Modules: al3ModuleClose... 61

5.2 Module Activation.. 62
Starting Modules: al3ModuleStart .. 62
Stopping Modules: al3ModuleStop... 62

 AAL1gator-32/-8/-4 Driver User’s Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 9

5.3 Profile Management.. 63
Creating Initialization Profiles: al3AddInitProfile .. 63
Getting Initialization Profiles: al3GetInitProfile ... 63
Deleting Initialization Profiles: al3DeleteInitProfile..................................... 63

5.4 Device Initialization ... 64
Initializing Devices: al3Init .. 64
Resetting Devices: al3Reset .. 64

5.5 Device Addition and Deletion.. 65
Adding Devices: al3Add ... 65
Deleting Devices: al3Delete ... 65

5.6 Device Activation and De-Activation... 66
Activating Devices: al3Activate .. 66
Deactivating Devices: al3DeActivate ... 66

5.7 Device Reading and Writing ... 67
Reading from Devices: al3Read .. 67
Writing to Devices: al3Write ... 67
Reading from Register Blocks: al3ReadBlock ... 68
Writing to Register Blocks: al3WriteBlock .. 68
Reading from Indirect Registers: al3ReadInd .. 69
Writing to Indirect Registers: al3WriteInd... 69

5.8 AAL1 Channel Provisioning .. 70
Setting Line Modes: al3SetLineMode .. 70
Configuring Underrun Data: al3SetUnderrun... 71
Setting Global Clock Configuration: al3GlobalClkConfig 71
Activating Channels: al3ActivateChannel .. 71
Deactivating Channels: al3DeActivateChannel ... 72
Activating Channels with Enhanced Parameters:

al3EnhancedActivateChannel ... 72
Activating Unstructured Channels: al3ActivateChannelUnstr 73
Activating Unstructured Channels with Enhanced Parameters:

al3EnhancedActivateChannelUnstr... 74
Deactivating Unstructured Channels: al3DeActivateChannelUnstr 74
Activating Structured Channels : al3ActivateChannelStr 75
Activating Structured Channels With Enhanced Parameters:

al3EnhancedActivateChannelStr ... 75
Deactivating Structured Channels: al3DeActivateChannelStr 76
Associating Channels With An Existing Mapping: al3AssociateChannel .. 76
Disassociating Channels With An Existing Mapping:

al3DisAssociateChannel.. 77

5.9 Channel Conditioning ... 77
Enabling Transmit Conditioning: al3EnableTxCond................................... 77
Disabling Transmit Conditioning: al3DisableTxCond 78
Enabling Receive Conditioning: al3EnableRxCond................................... 78
Disabling Receive Conditioning: al3DisableRxCond 79

5.10 SRTS Functions.. 79
Enabling SRTS: al3EnableSRTS ... 79
Disabling SRTS: al3DisableSRTS ... 79

5.11 Loopback Functions.. 80

 AAL1gator-32/-8/-4 Driver User’s Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 10

Enabling Loopbacks: al3EnableLpbk... 80
Disabling Loopbacks: al3DisableLpbk ... 80
Enabling Utopia Loopbacks: al3UtopiaLpbkEnable 81
Disabling Utopia Loopbacks: al3UtopiaLpbkDisable 81

5.12 Idle Detection Functions ... 81
Setting Activate Timeslots: al3SetTimeslotActive....................................... 81
Setting Idle Timeslots: al3SetTimeslotIdle ... 82

5.13 OAM Functions ... 82
Transmitting OAM Cells: al3TxOAMcell ... 82
Receiving OAM Cells: al3RxOAMcell .. 83

5.14 Alarms and Statistics .. 83
Enabling DS3 AIS Cells: al3EnableDS3AISCells....................................... 83
Disabling DS3 AIS Cells: al3DisableDS3AISCells 84
Enabling SBI Alarms: al3EnableSBIAlarm ... 84
Disabling SBI Alarms: al3DisableSBIAlarm ... 84
Returning Conditional Cell Count: al3GetTCondCellCount 85
Returning Suppressed Cell Count: al3GetTSupprCellCount 85
Returning Tx Cell Count: al3GetTCellCount .. 85
Returning Rx OAM Cell Count: al3GetROAMCellCount............................ 86
Returning Tx OAM Cell Count: al3GetTOAMCellCount............................. 86
Returning Dropped Rx OAM Cell Count: al3GetRDroppedOAMCellCount86
Returning SN Error Count: al3GetRIncorrectSn .. 87
Returning Rx Cell Count With Incorrect SNP: al3GetRIncorrectSnp......... 87
Returning Cell Count: al3GetRCellCount... 87
Returning Dropped Rx Cell Count: al3GetRDroppedCellCount 88
Returning Rx Underrun Count: al3GetRecvUnderrun................................ 88
Returning Rx Overrun Count: al3GetRecvOverrun.................................... 88
Returning Rx Pointer Reframe Count: al3GetRPtrReframeCount............. 88
Returning Rx Pointer Parity Error Count: al3GetRPtrParErrorCount......... 89
Returning Lost Cell Count: al3GetRLostCellCount 89
Returning Misinserted Cell Count: al3GetRMisInsertedCellCount 89
Returning Sticky Bits: al3GetStickyBits .. 90

5.15 UTOPIA Bus Configuration Functions .. 90
Configuring Utopia Bus: al3UtopiaConfig .. 90

5.16 RAM Interface Configuration Functions.. 91
Configuring RAM Interface: al3RamConfig.. 91

5.17 SBI Bus Configuration Functions.. 92
Configuring SBI Bus: al3SBIConfig.. 92
Configuring SBI Bus Tributarys: al3SBITribConfig..................................... 92

5.18 Direct Line Configuration Functions ... 93
Configuring Direct Lines: al3DirectConfig .. 93

5.19 Interrupt Service Functions... 93
Getting ISR Mask Registers: al3GetMask ... 93
Setting ISR Mask Registers: al3SetMask .. 94
Clearing ISR Mask Registers: al3ClearMask... 94
Polling ISR Registers: al3Poll .. 94
ISR Config: al3ISRConfig... 95
Reading Interrupt Status Registers: al3ISR ... 95

 AAL1gator-32/-8/-4 Driver User’s Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 11

Device Processing Routine: al3DPR.. 96

5.20 Counter Functions .. 96
Retrieving Statistical Counts: al3GetCounter ... 96
Retrieving Statistical Counts: al3GetStats.. 97
Clearing Statistical Counts: al3ClearStats.. 97

5.21 Device Diagnostics ... 98
Testing A Single Device Register: al3TestReg ... 98
Testing Device Registers: al3TestRegs.. 98
Testing Data Bus Wiring: al3TestDataBus.. 98
Testing Address Bus Wiring: al3TestAddrBus .. 99

5.22 Callback Functions ... 99
A1SP Callbacks: cbackA1SP... 100
Utopia Callbacks: cbackUtopia .. 100
RAM Callbacks: cbackRam.. 100
SBI Callbacks: cbackSBI.. 101

6 Hardware Interface ... 102

6.1 Device I/O ... 102
Safe Reading from Registers: sysAl3SafeReadReg................................ 102
Reading from Registers: sysAl3ReadReg ... 102
Writing to Registers: sysAl3WriteReg .. 103

6.2 Interrupt Servicing... 103
Installing Handlers: sysAl3ISRHandlerInstall ... 103
Invoking Handlers: sysAl3ISRHandler ... 103
Removing Handlers: sysAl3ISRHandlerRemove..................................... 104
Invoking DPR Routines: sysAl3DPRTask .. 104
Starting the DPR Tasks: sysAl3DPRTaskStart ... 104
Stopping the DPR Tasks: sysAl3DPRTaskStop 104
Starting Statistics Task: sysAl3StatTask ... 105
Starting Statistics Task: sysAl3StatTaskStart.. 105
Stopping Statistic Updates: sysAl3StatTaskStop...................................... 106

7 RTOS Interface... 107

7.1 Memory Allocation/De-Allocation.. 107
Allocating Memory: sysAl3MemAlloc ... 107
Freeing Memory: sysAl3MemFree... 107

7.2 Buffer Management .. 108
Starting Buffers: sysAl3BufferStart ... 108
Getting Buffers: sysAl3DPVBufferGet.. 108
Getting Buffers: sysAl3ISVBufferGet ... 109
Sending Buffers: sysAl3BufferSend ... 109
Receiving Buffers: sysAl3BufferReceive.. 109
Returning Buffers: sysAl3DPVBufferRtn .. 110
Returning Buffers: sysAl3ISVBufferRtn.. 110
Stopping Buffers: sysAl3BufferStop ... 110

7.3 Timers ..111
Creating Timer Objects: sysAl3TimerCreate...111

 AAL1gator-32/-8/-4 Driver User’s Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 12

Starting Timers: sysAl3TimerStart ...111
Aborting Timers: sysAl3TimerAbort...111
Deleting Timers: sysAl3TimerDelete ...111
Suspending a Task: sysAl3TimerSleep.. 112

7.4 Semaphores ... 112
Creating Semaphores: sysAl3SemCreate ... 112
Taking Semaphores: sysAl3SemTake.. 113
Giving Semaphores: sysAl3SemGive .. 113
Deleting Semaphores: sysAl3SemDelete .. 113

7.5 Preemption.. 113
Disabling Preemption: sysAl3PreemptDisable... 113
Disabling Preemption: sysAl3PreemptEnable ... 114

8 Porting Drivers.. 115

8.1 Driver Source Files ... 115

8.2 Driver Porting Procedures .. 115
Procedure 1: Porting Driver RTOS Extensions .. 116
Procedure 2: Porting Drivers to Hardware Platforms............................... 118
Procedure 3: Porting Driver Application-Specific Elements 119
Procedure 4: Building Drivers .. 120

Appendix A: Coding Conventions ... 121
Macros.. 123
Constants ... 123
Structures ... 123
Functions.. 124
API Functions ... 124
Porting Functions ... 124
Variables... 124
Generic API Files.. 126
Device Specific API Files.. 126
Hardware Dependent Files .. 126
RTOS Dependent Files .. 126
Other Driver Files ... 127

Appendix B: Error Codes .. 128

Appendix C: AAL1gator-32 Events ... 130
SBI Alarm Events ... 130
SBI Extract Events ... 130
SBI Insert Events.. 130
UTOPIA Events .. 131
RAM Parity Events ... 131
A1SP Events .. 131

Acronyms .. 133

List of Terms.. 135

Index ... 137

 AAL1gator-32/-8/-4 Driver User’s Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 13

LIST OF FIGURES

Figure 1: Driver Interfaces .. 18

Figure 2: Driver API Components ... 19

Figure 3: Driver Architecture ... 22

Figure 4: State Diagram .. 25

Figure 5: Module Management Flow Diagram.. 28

Figure 6: Device Management Flow Diagram .. 29

Figure 7: Interrupt Service Model.. 30

Figure 8: Cell Header Interpretation.. 34

Figure 9: Driver Source Files .. 115

 AAL1gator-32/-8/-4 Driver User’s Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 14

LIST OF TABLES

Table 1: AAL1 Channel Enhanced Parameters Default Values:
sAL3_CFG_CHAN_ENH ... 39

Table 2: AAL1 Channel Sequence Number Processing Default Values:
sAL3_CFG_CHAN_SNP.. 39

Table 3: AAL1 Channel Conditioning Default Values: sAL3_CFG_CHAN_COND 40

Table 4: AAL1 Channel Idle Channel Detection Default Values:
sAL3_CFG_CHAN_IDET... 41

Table 5: Global Clock Default Initialization Profile Values: sAL3_DIV_CLK 41

Table 6: UTOPIA/Any-PHY Default Initialization Profile Values: sAL3_DIV_UTOPIA 41

Table 7: RAM Default Initialization Profile Values: sAL3_DIV_RAM................................. 43

Table 8: SBI Bus Default Initialization Profile Values: sAL3_DIV_SBI.............................. 43

Table 9: SBI Bus SPE Default Initialization Profile Values: sAL3_DIV_SBI_SPE 44

Table 10: SBI Bus Link Group Default Initialization Profile Values:
sAL3_DIV_SBI_LGRP ... 44

Table 11: Direct Line Default Initialization Profile Values: sAL3_DIV_DIRECT 44

Table 12: Module Initialization Vector: sAL3_MIV... 45

Table 13: Initialization Profile: sAL3_DIV .. 45

Table 14: AAL1 Line Configuration: sAL3_DIV_LINE ... 46

Table 15: Global Clock Configuration: sAL3_DIV_CLK .. 47

Table 16: UTOPIA/Any-PHY Configuration: sAL3_DIV_UTOPIA 47

Table 17: RAM Configuration: sAL3_DIV_RAM.. 48

Table 18: SBI Bus Configuration: sAL3_DIV_SBI... 48

Table 19: SBI Bus SPE Configuration: sAL3_DIV_SPE ... 49

Table 20: SBI Bus Link Group Configuration: sAL3_DIV_LGRP 49

Table 21: SBI Bus Tributary Configuration: sAL3_DIV_TRIB ... 49

Table 22: Direct Line Configuration: sAL3_DIV_DIRECT... 50

Table 23: AAL1 Standard Channel Configuration: sAL3_CFG_CHAN 50

Table 24: AAL1 Enhanced Channel Configuration: sAL3_CFG_CHAN_ENH.................. 50

 AAL1gator-32/-8/-4 Driver User’s Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 15

Table 25: AAL1 Channel Sequence Number Processing Configuration:
sAL3_CFG_CHAN_SNP.. 51

Table 26: AAL1 Channel Conditioning Configuration: sAL3_CFG_CHAN_COND........... 51

Table 27: AAL1 Channel Idle Channel Detection Configuration:
sAL3_CFG_CHAN_IDET... 52

Table 28: Counter Specification: sAL3_CNTR_SPEC .. 52

Table 29: Sticky Bit Error Word: sAL3_STICKY.. 52

Table 30: ISR Mask: sAL3_MASK .. 53

Table 31: Module Data Block: sAL3_MDB.. 55

Table 32: Device Data Block: sAL3_DDB ... 57

Table 33: Module Status Block: sAL3_MSB.. 58

Table 34: Device Status Block: sAL3_DSB... 58

Table 35: Interrupt Service Vector: sAL3_ISV... 59

Table 36: Deferred Processing Vector: sAL3_DPV... 60

Table 37: Variable Type Definitions... 121

Table 38: Naming Conventions ... 122

Table 39: File Naming Conventions .. 125

 AAL1gator-32/-8/-4 Driver User’s Manual
Driver Porting Quick Start

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 16

1 DRIVER PORTING QUICK START
This section summarizes how to port the AAL1gator-32 device driver to your hardware
and Real-time Operating System (RTOS) platform. For more information about porting
the AAL1gator-32 driver, see Section 7.5 (page 115).

Note: Because each platform and application is unique, this manual can only offer
guidelines for porting the AAL1gator-32 driver.

AAL1gator-32 driver code is organized into C source files. You may need to modify the
code or develop additional code. The code is in the form of constants, macros, and
functions. For ease of porting, the code is grouped into source files (src) and include
files (inc). The source files contain the functions and the include files contain the
constants and macros.

To port the AAL1gator-32 driver to your platform:

1. Port the driver’s RTOS extensions (page 116):

�� Data types
�� RTOS-specific services
�� Utilities and interrupt services that use RTOS-specific services

2. Port the driver to your hardware platform (page 118):

�� Port the device detection function.
�� Port low-level device read-and-write macros.
�� Define hardware system-configuration constants.

3. Port the driver’s application-specific elements (page 119):

�� Define the task-related constants.
�� Code the callback functions.

4. Build the driver (page 120).

 AAL1gator-32/-8/-4 Driver User’s Manual
Driver Functions and Features

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 17

2 DRIVER FUNCTIONS AND FEATURES
This section describes the main functions and features supported by the AAL1gator-32
driver.

Table 2: Driver Functions and Features

Function Description

Device
Initialization and
Reset

(page 64)

Initializes the AAL1gator-32 driver and its associated context
structures. This involves reading in an initialization vector that
contains various configuration parameters such as interface
configuration. The driver validates this vector and the AAL1gator-32
device configures accordingly. The function also resets the
AAL1gator-32 and the context information for that device.

Device Addition
and Deletion

(page 65)

Allocates and initializes memory to store context information for the
device being added. De-allocates device context memory during
device shutdown. You must locate the device on the Address Bus
before you add the device.

Channel
Provisioning

(page 70)

Configures the channels of the AAL1gator-32 device by
programming channel registers according to application parameters.

Statistics
Collection and
Status
Monitoring

(page 83)

Polls the various AAL1gator-32 counters so that they do not max out
at 16 bits.

Monitors device status (via interrupts or polling) and invokes
application-defined callback functions when significant alarm/error
events occur.

Interrupt
Servicing

(page 93)

Clears the interrupts raised by the AAL1gator-32 and stores the
interrupt status for later processing by a deferred processing routine.
The deferred processing routine runs in the context of a separate task
within the RTOS and takes appropriate actions based on the interrupt
status retrieved by the Interrupt Servicing Routine (ISR). This is true
for both polled operation or interrupt operation.

In polled mode, a separate task polls the interrupt status registers
periodically. Once called the flows remain identical to the interrupt
mode.

Device
Diagnostics

(page 98)

The driver will perform the following optional device diagnostics as
part of a power-on self-test:

�� Tests register access

�� Tests RAM access

 AAL1gator-32/-8/-4 Driver User’s Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 18

3 SOFTWARE ARCHITECTURE
This section describes the software architecture of the AAL1gator-32 device driver. This
includes a discussion of the driver’s external interfaces and its main components.

3.1 Driver Interfaces

Figure 1 illustrates the external interfaces defined for the AAL1gator-32 device driver.

Figure 1: Driver Interfaces

RTOS

 Function CallsIndication Callbacks

Register AccessHardware Interrupts

Service Calls

Application

AAL1gator-32 Driver

AAL1gator-32 Device

Service Callbacks

3.2 Application Programming Interface

The driver’s API is a collection of high level functions that can be called by application
code to configure, control, and monitor the AAL1gator-32 device, such as:

�� Initializing the device

�� Validating device configuration

�� Retrieving device status and statistics information.

�� Diagnosing the device

 AAL1gator-32/-8/-4 Driver User’s Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 19

The driver API functions use the driver library functions as building blocks to provide
this system level functionality (see below).

Driver API

The Driver Application Programming Interface (API) lists high-level functions that are
invoked by application code to configure, control and monitor AAL1gator-32 devices.
The API functions perform operations that are more meaningful from a system’s
perspective. The API includes functions that initialize the devices, perform diagnostic
tests, validate configuration information to prevent incorrect configuration of the devices,
and retrieve status and statistics information. The Driver API functions use the services of
the other driver modules to provide this system-level functionality to the application
programmer.

In addition, the Driver API consists of callback routines used to notify the application of
significant events that take place within the device(s) and module.

Figure 2: Driver API Components

 Driver API

AAL1 Channel
Configuration

RAM Configuration

Direct Line
Configuration

Alarms and Statistics

UTOPIA/AnyPhy
Configuration

SBI Bus
Configuration

Alarms and Statistics

Alarms and Statistics functions are responsible for tracking devices status information
and accumulating statistical counts for each device registered with (added to) the driver.
This information is stored for later retrieval by the application software, and is also
responsible for generating various alarms.

AAL1 Channel Configuration

AAL1 Channel Configuration functions are responsible for the provisioning and
configuration of AAL1 Channels. This includes activating channels for structured and
unstructured lines. For structured lines, timeslots are bundled to create AAL1 channels.
These lines or bundles of timeslots then map to ATM VCs and in the process have several
operating parameters configured.

 AAL1gator-32/-8/-4 Driver User’s Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 20

AAL1 Channels are configured by using some or all of the available operating
parameters. The “standard” channel configuration functions allow the user to easily
configure an AAL1 channel by using defaults for most of the channel configuration
parameters. The “enhanced” channel configuration functions open up all the
configuration options to the user and are grouped so that a user can selectively configure
a group or leave it in the default configuration.

The AAL1 channel configuration groups supported are: standard (the minimal
parameters); enhanced; sequence number processing; conditioning; and idle detection.
The user can configure AAL1 channels in any combination of the above

UTOPIA/Any-PHY Configuration

The UTOPIA/Any-PHY bus is the interface to the ATM side of the AAL1gator-32
devices. The source (Tx) and sink (Rx) sides of the bus are separately configurable.

RAM Configuration

The RAM interface is the interface between the AAL1gator-32 devices and their SRAMs,
and it is here that configuration and statistics data structures are stored.

SBI Bus Configuration

The SBI bus is a parallel interface to TDM traffic that is only supported by the
AAL1gator-32 (not the AAL1gator-8 and AAL1gator-4). This interface is capable of
delivering combinations of T1/E1/DS3 to the AAL1gator-32 device. This section is
responsible for configuring the SBI Bus Interface. SBI tributary types and mappings are
configurable. The AAL1gator-32 device supports two pages of SBI Tributary mappings,
one of which is configured as active by the application (the other is left inactive). This
support enables the application to make changes to the inactive page before returning to
active mode.

Direct Line Configuration

The Direct Line interface bypasses the SBI and H/MVIP blocks and brings clock & data
signals out of the Device for connection to external framer(s). The Direct Line Interface
supports DS3 & E3, E1 & T1 connections.

3.3 Real Time Operating System

The RTOS interface module provides functions that enable the driver to use RTOS
services. The AAL1gator-32 driver requires memory, interrupt, and preemption services
from the RTOS.

The RTOS interface functions perform the following tasks for the AAL1gator-32 device
and driver:

�� Allocate and deallocate memory

 AAL1gator-32/-8/-4 Driver User’s Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 21

�� Manage buffers for the DPR and ISR

�� Start and stop task execution

The RTOS interface also includes service callbacks. These functions are called by the
driver in order to use RTOS service calls, such as install interrupts and start timers.

Note: You must modify RTOS interface code to suit your RTOS.

3.4 Driver Hardware Interface

The AAL1gator-32 hardware interface provides functions that read from and write to
AAL1gator-32 device-registers. The hardware interface also provides a template for an
ISR that the driver calls when the device raises a hardware interrupt. You must modify
this function based on the interrupt configuration of your system.

 AAL1gator-32/-8/-4 Driver User’s Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 22

3.5 Main Components

Figure 3 illustrates the top level architectural components of the ALL1gator-32 device
driver. This applies in both polled and interrupt driven operation. In interrupt driven
mode, the Hardware interrupt is vectored to an application function that in turn calls the
driver’s ISR API al3ISR(). The al3ISR reads the device status, clears the cause(s)
of the interrupt and creates a message that is sent to the DPR. In polled mode, the
application makes a periodic call to al3Poll(),which in turn executes some of the
functionality of the ISR (in order to read the Device status), and creates a message that is
sent to the DPR.

The driver includes four main modules:

�� Driver library module

�� Device data-block module

�� Interrupt-service routine module

�� Deferred-processing routine module

Figure 3: Driver Architecture

 Function
Calls

Register
Access

Hardware
Interrupts

Se
rv

ic
e

C
al

ls

Application

R
TO

S

AAL1gator-32 Device

Deferred
Processing

Routine

Interrupt
Servicing
Routine

Device
Data Block

Interrupt
Context

AAL1gator-32
 Device Driver

R
TO

S
In

te
rfa

ce

Hardware Interface

Indication
Callbacks

Driver
Library

Functions

Se
rv

ic
e

C
al

lb
ac

ksDriver API

 AAL1gator-32/-8/-4 Driver User’s Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 23

Driver Library Module

The driver library module is a collection of low-level utility functions that manipulate the
device registers and the contents of the driver’s Device Data-Block (DDB). The driver
library functions serve as building blocks for higher level functions that constitute the
driver API module. Application software does not usually call the driver library functions.

Device Data-Block Module

The Device Data-Block Module (DDB) stores context information about the AAL1gator-
32 device, such as:

�� Device state

�� Control information

�� Initialization vectors

�� Callback function pointers

�� Statistical counts

The driver allocates context memory for the DDB when the driver registers a new device.

Module Data Block

The Module Data Block (MDB) and Module Status Block (MSB) are the top layer data
structures. They are created by the AAL1gator-32 device driver to keep track of its
initialization and operating parameters, modes and dynamic data. The MDB allocates via
an RTOS call at the time the driver first initializes. The module also contains the MSB
and all the Device Structures.

The Device Data Block (DDB) and Device Status Block (DSB) are contained in the
MDB and initialized by the AAL1gator-32 Module for each Device that is registered.
This keeps track of the Device’s initialization and operating parameters, modes and
dynamic data. There is a limit on the number of Device Blocks (Devices) available, and it
is important to note that the USER sets that limit when the Module initializes.

Interrupt-Service Routine Module

The AAL1gator-32 driver provides an ISR called al3ISR that checks if any valid
interrupt conditions are present for the device. This function can be used by a system-
specific interrupt-handler function to service interrupts raised by the device.

The low-level interrupt-handler function that traps the hardware interrupt and calls
al3ISR, is system and RTOS dependent. Therefore, it is outside the scope of the driver.

See page 103 for a detailed explanation of the platform specific routines that must be
supplied by the user.

 AAL1gator-32/-8/-4 Driver User’s Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 24

Deferred-Processing Routine Module

The Deferred-Processing Routine Module provided by the AAL1gator-32 driver
(al3DPR) clears and processes interrupt conditions for the device. Typically a system
specific function, which runs as a separate task within the RTOS, executes the DPR.

See page 104 for a detailed explanation of the DPR and interrupt-servicing model.

 AAL1gator-32/-8/-4 Driver User’s Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 25

3.6 Software State Description

Figure 4 shows the software state diagrams for the AAL1gator-32 module and device(s)
as maintained by the driver.

Figure 4: State Diagram

READY

IDLE
al3ModuleClose

al3ModuleOpen

START

MODULE STATES

al3ModuleStop

al3ModuleStart al3ModuleClose

al3DeActivate

al3Activate

START

al3Add al3Delete

al3Reset
al3Reset

al3Init

PRESENT

INACTIVEACTIVE

PER-DEVICE STATES

The diagram shows state transitions made on the successful execution of the
corresponding transition routines. State information helps maintain the integrity of the
MDB and DDB(s) by controlling the set of operations allowed in each state.

 AAL1gator-32/-8/-4 Driver User’s Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 26

3.7 Module States

Start

The AAL1gator-32 driver Module is not initialized. The only API function accepted in
this state is al3ModuleOpen. In this state the driver does not hold any RTOS resources
(memory, timers, etc), has no running tasks, and performs no actions.

Idle

The AAL1gator-32 driver Module initializes successfully via the API function
al3ModuleOpen. The Module Initialization Vector (MIV) has been validated, the
Module Data Block (MDB) has been allocated and loaded with current data; the per-
device data structures are allocated; and the RTOS has responded favorably to all the
requests sent to it by the driver. The only API functions accepted in this state are
al3ModuleStart and al3ModuleClose.

Ready

The normal operating state for the driver Module is “Ready” and can be entered by a call
to al3ModuleStart. All RTOS resources allocate and the driver is ready for additional
devices. The API functions accepted here for Module control are al3ModuleStop, and
al3ModuleClose. The driver Module remains in this state while Devices are in
operation. Add devices via al3Add.

3.8 Device States

The following is a description of the AAL1gator-32 per-device states.

Start

The AAL1gator-32 Device is not initialized. The only API function accepted in this state
is al3Add. In this state the device is unknown by the driver and performs no actions.

Present

The AAL1gator-32 Device has been successfully added via the API function al3Add. A
Device Data Block (DDB) is associated to the Device and a device handle is provided for
the USER. In this state, the device performs no actions. The only API functions accepted
in this state are al3Init and al3Delete.

 AAL1gator-32/-8/-4 Driver User’s Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 27

Active

The normal operating state for the Device(s) enters by a call to al3Activate. State
changes initiate from the ACTIVE state via al3DeActivate, al3Reset and
al3Delete.

Inactive

Enter “Inactive” via the al3Init or al3DeActivate function calls. In this state the
Device remains configured but all data functions de-activate. This includes interrupts and
Alarms, Status and Statistics functions. al3Activate will return the device to the
ACTIVE state, while al3Reset or al3Delete will de-configure the Device. Queues
are torn down.

3.9 Processing Flows

This section describes the main processing flows of the AAL1gator-32 driver modules.

The flow diagrams presented here illustrate the sequence of operations that take place for
different driver functions. The diagrams also serve as a guide to the application
programmer by illustrating the sequence in which the application must invoke the driver
API.

Module Management

The following diagram illustrates the typical function call sequences that occur when
initializing or shutting down the AAL1gator-32 driver module.

 AAL1gator-32/-8/-4 Driver User’s Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 28

Figure 5: Module Management Flow Diagram

De-registers an initialization profile previously registered with the driver.

Performs Module level shutdown of the driver. This involves deleting all
devices currently installed and de-allocating all RTOS resources.

Performs module level shutdown of the driver. Deletes all devices currently
registered with the driver and de-allocates all the driver's memory.

Performs all device level functions here (add, init, activate, de-activate,
reset, delete)

Register an initialization profile. This allows the user to store pre-defined
parameter vectors that are validated ahead of time. When the device-
initialization function is invoked only a profile number need to be passed.
This method simplifies and expedites the above operations.

Performs module level startup of the driver. This involves allocating RTOS
resources such as semaphores and timers.

Performs module level initialization of the AAL1gator-32 driver. Validates
the Module Initialization Vector (MIV). Allocates memory for the MDB and
all its components (i.e. all the memory needed by the driver) and then
initializes the contents of the MDB with the validated MIV.

al3ModuleStart

al3ModuleOpen

al3AddInitProfile

al3DeleteInitProfile

al3ModuleStop

al3ModuleClose

END

START

Device Management

The following figure shows the functions and process that the driver uses to add,
initialize, re-initialize, and delete the AAL1gator-32 device.

 AAL1gator-32/-8/-4 Driver User’s Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 29

Figure 6: Device Management Flow Diagram

De-activates the device and removes it from normal operation. This
involves disabling the device interrupts and other global enables, such as
links. Removes the ISR routine for this device using
sysA13IntRemoveHandler.

Applies a software reset to the device to put it in its default startup state.

Removes the device from the list of devices being controlled by the
AAL1gator-32 driver. This function de-allocates the device context
information for the device being deleted.

Re-initializes the device, resets the device using a13Reset, and goes
through the initialization sequence again.

Prepares the device for normal operation by enabling interrupts and other
global enables. Installs an ISR function using sysA13IntInstallHandler. The
device is now operational and all other APIs can be invoked.

Initializes the device based on an initialization vector provided by the
application. The initialization vector is validated by the application and
stored by the driver as part of device context information. The device
registers are then configured accordingly.

Detects the device being added in the hardware (using
sysA13GetDevAddr), performs a register readback test (using
a13RegisterTest), allocates memory for storing device context information,
and applies a software reset to the device (using a13Reset).

al3Init

al3Add

al3Activate

al3Reset

al3Deactivate

al3Reset

al3Delete

END

START

3.10 Interrupt Servicing

The AAL1gator-32 driver services device interrupts using an interrupt service routine
(ISR) that traps interrupts. It also uses a deferred interrupt-processing routine (DPR) that
actually processes the interrupt conditions and clears them. This action lets the ISR
execute quickly and exit. Most of the time-consuming processing of the interrupt
conditions defers to the DPR by queuing the necessary interrupt-context information to
the DPR task. The DPR function runs in the context of a separate task within the RTOS.

Note: Since the DPR task processes potentially serious interrupt conditions, you should
set the DPR task’s priority higher than the application task interacting with the
AAL1gator-32 driver.

The driver provides system-independent functions, al3ISR and al3DPR. You must fill in
the corresponding system-specific functions, sysAl3ISR and sysAl3DPR. The
system-specific functions isolate the system-specific communication mechanism
(between the ISR and DPR) from the system-independent functions, al3ISR and
al3DPR.

 AAL1gator-32/-8/-4 Driver User’s Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 30

Figure 7 illustrates the interrupt service model used in the AAL1gator-32 driver design.

Figure 7: Interrupt Service Model

a13ISR

sysA13IntHandler

a13DPR

Interrupt
Status

sysA13DPRTask Indication
Callbacks

Application

Note: Instead of using an interrupt service model, you can use a polling service model in
the AAL1gator-32 driver to process the device’s event-indication registers (see page 31).

Calling al3ISR

An interrupt handler function, which is system dependent, calls al3ISR. Before this,
however, the low-level interrupt-handler function traps the device interrupts. You must
implement this function for your system. For your reference, an example implementation
of the interrupt handler (sysAl3IntHandler) appears on page 103 .You can customize
this example implementation to suit your needs.

The implemented interrupt handler (sysAl3IntHandler) installs in the interrupt vector
table of the system processor. It calls when one or more AAL1gator-32 devices interrupt
the processor. The interrupt handler subsequently calls al3ISR for each device in the
active state.

The al3ISR function reads from the master interrupt-status register and the
miscellaneous interrupt-status register of the AAL1gator-32. If a valid status bit is set,
al3ISR then returns with the status information. Thereafter, sysAl3IntHandler
function sends a message to the DPR task. The DPR task consists of the device handles
of all the AAL1gator-32 devices that have had valid interrupt conditions.

Note: Normally you should store status information for deferred interrupt processing by
implementing a message queue. The interrupt handler sends the status information to the
queue by the sysAl3IntHandler.

Calling al3DPR

The sysAl3DPRTask function is a system specific function that runs as a separate task
within the RTOS. You should set the DPR task’s priority higher than the application
task(s) interacting with the AAL1gator-32 driver. In the message-queue implementation
model, this task has an associated message queue. The task waits for messages from the
ISR on this message queue. When a message arrives, sysAl3DPRTask calls the DPR
(al3DPR).

The al3DPR then processes the status information and takes appropriate action based on
the specific interrupt condition detected. The nature of this processing can differ from
system to system. As a result, al3DPR calls different indication callbacks for different
interrupt conditions.

 AAL1gator-32/-8/-4 Driver User’s Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 31

Typically, you should implement these callback functions as simple message posting
functions that post messages to an application task. However, you can implement the
indication callback to perform processing within the DPR task context and return without
sending any messages. In this case, ensure that the indication function does not call any
API functions that change the driver’s state, such as al3Delete. In addition, ensure that
the indication function is non-blocking, as the DPR task executes while AAL1gator-32
interrupts are disabled. These callbacks can be customized to suit your system. See page
99 for example implementations of the callback functions.

Note: Since the al3ISR and al3DPR routines do not specify a communication
mechanism, you have full flexibility in choosing a communication mechanism between
the two. A convenient way to implement this communication mechanism is to use a
message queue, which is a service that most RTOS’ provide.

You must implement the two system specific functions, sysAl3IntHandler and
sysAl3DPRTask. When the driver calls sysAl3IntInstallHandler for the first time,
the driver installs sysAl3IntHandler in the interrupt vector table of the processor. The
sysAl3DPRTask function is also spawned as a task during the first time invocation of
sysAl3IntInstallHandler. The sysAl3IntInstallHandler function also
creates the communication channel between sysAl3IntHandler and sysAl3DPRTask.
This communication channel is most commonly a message queue associated with the
sysAl3DPRTask.

Similarly, during removal of interrupts, the driver removes sysAl3IntHandler from
the microprocessor’s interrupt vector table and deletes the task associated with
sysAl3DPRTask.

As a reference, this manual provides example implementations of the interrupt
installation and removal functions on page 103. You can customize these prototypes to
suit your specific needs.

3.11 Polling

Instead of using an interrupt service model, you can use a polling model in the
AAL1gator-32 driver to process the device’s event-indication registers.

The following figure illustrates the polling model used in the AAL1gator-32 driver
design.

 AAL1gator-32/-8/-4 Driver User’s Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 32

Figure 9: Polling Model

a13DPR

sysA13DPRTask Indication
Callbacks

Application

Task Delay

The polling code includes some system specific code (prefixed by “sysAl3”), which
typically you must implement for your application. The polling code also includes some
system independent code (prefixed by “al3”) provided by the driver that does not change
from system to system.

In polling mode, sysAl3IntHandler and al3ISR are not used. Instead, the application
spawns a sysAl3DPRTask function as a task processor when the driver calls
sysAl3IntInstallHandler for the first time.

In sysAl3DPRTask, the driver-supplied DPR (al3DPR) periodically calls active devices.
The al3DPR reads from the master interrupt-status and miscellaneous interrupt-status
registers of the AAL1gator-32. If some valid status bits are set, it processes the status
information and takes appropriate action based on the specific interrupt condition
detected.

The nature of this processing differs from system to system. Consequently, the DPR calls
different indication callbacks for different interrupt conditions. You can customize these
callbacks to fit your application’s specific requirements. See page 99 for a description of
these callback functions.

Similarly, during the removal of polling the driver removes the task associated with
sysAl3DPRTask if the AAL1gator-32 devices do not activate.

3.12 Device Configuration

This section describes the various configuration operations performed by the driver.

AAL1 Channel Configuration

AAL1 channel configuration handles the provisioning and configuring of AAL1 channels
inside the AAL1gator -32/-8/-4.

The API for this section of the driver consists of several functions in five groups.

 AAL1gator-32/-8/-4 Driver User’s Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 33

The first is the channel provisioning group which consists of five functions. The first
function, al3ActivateChannelUnstr, activates an AAL1 channel using a T1, E1,
DS3, or E3 in unstructured mode. This AAL1 channel occupies that entire line. The next
function, al3ActivateChannelStr, activates an AAL1 channel using one or more
timeslots of a T1 or E1 line. Both al3ActivateChannelStr and
al3ActivateChannelUnstr have enhanced versions. The enhanced versions offer
extra configuration parameters such as max buffer size, cdvt, AAL0 mode, etc. The
enhanced versions also allow the user to configure sequence number processing,
conditioning and idle channel detection. If a NULL pointer passes for any of the channel
configuration data structures, the al3EnhancedActivateChannelStr and
al3EnhancedActivateChannelUnstr functions will use the default values for those
data structures. These are the same defaults used when the non-enhanced Activate
functions are invoked. The last function in this group, al3DeActivateChannel,
deactivates an already provisioned AAL1 channel.

The second API group can add or remove timeslots of a T1 or E1 to or from an AAL1
channel. The function al3AssociateChannel adds timeslots to an AAL1 channel and
the function al3DisAssociateChannel removes timeslots from an AAL1 channel.

The third API group is the SRTS (Synchronous Residual Time Stamp) group, which
consists of two functions. The first function, al3SRTSEnable, enables SRTS and the
second function, al3SRTSDisable, disables it.

Note: The AAL1gator-32/-8/-4 line level, not at the AAL1 channel level, controls the
SRTS.

The fourth API group is the Conditioning group, and consists of four functions. The first
function, al3EnableTxCond, enables conditioning in the Tx direction. The second,
al3DisableTxCond, disables conditioning in the Tx direction. The third,
al3EnableRxCond, enables conditioning in the Rx direction and the fourth,
al3DisableRxCond, disables conditioning in the Rx direction.

The final API group is the Loopback group, which consists of two functions. The first
function, al3LpbkEnable, puts an AAL1 channel in loopback mode and the second,
al3LpbkDisable, takes the AAL1 channel out of loopback mode.

Finally, there is one function to configure clock generation for the lines on the
AAL1gator-32/-8/-4device. The function, al3GlobalClkConfig, configures the
adaptive filter size for the adaptive clock source method and the NCLK frequency for
SRTS clock method.

Table 5 on page 41 shows the default values for global clock configuration

UTOPIA/Any-PHY Bus Configuration

UTOPIA/Any-PHY Bus configuration sets up the UTOPIA or Any-PHY bus on the
AAL1gator-32.

 AAL1gator-32/-8/-4 Driver User’s Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 34

The AAL1gator-32’s UTOPIA/Any-PHY bus interface is capable of supporting an 8-bit
or 16-bit wide bus, Level 1 or Level 2; as well as act as a Level 1 Bus Slave or Bus
Master. On a Level 2 bus it can only act as a Bus Slave. Odd or Even Parity check can
also be selected.

The UTOPIA/Any-PHY interface can be placed in remote loopback, so that all cells
received by the AAL1gator-32/-8/-4 are looped back out the UTOPIA interface.
Loopbacks are also possible on a per-VC basis towards the line.

The UTOPIA/Any-PHY interface has to identify which AAL1 Channel a particular VC is
associated with. A mapping VPI:VCI to AAL1 Channel Queue method (Cell Header
Interpretation) does this. The AAL1gator-32/-8/-4 devices support 3 methods for doing
this.

Figure 8 illustrates the three methods.

Figure 8: Cell Header Interpretation

11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Ignored

Ignored A1SP Data Line Queue MOD 32

11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Ignored

Ignored A1SP Data Line Queue MOD 32 Ignored

11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Ignored A1SP Line

Ignored Ignored Ignored

Method 1

Method 2

Method 3
for UDF only

For Method 3, VCI is ignored, Queue Number 0 is assumed.

There is only one UTOPIA/Any-PHY related function in the API, al3UtopiaConfig
configures the UTOPIA/Any-PHY interface according to the parameters passed to this
function. There is a default initialization profile defined with the driver. The Initialization
Profiles on page 41 include the UTOPIA/Any-PHY configuration.

 AAL1gator-32/-8/-4 Driver User’s Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 35

RAM Interface Configuration

The AAL1gator-32/-8/-4 RAM interface supports one of either Synchronous SRAMs or
ZBT RAMs. These RAMs store some AAL1gator-32/-8/-4 data structures. The
AAL1gator-32/-8/-4 can also check Even or Odd parity on the RAMs’ data buses and
generate parity error interrupts to the microprocessor.

There are 2 RAM interfaces supported by the AAL1gator-32, and 1 RAM interface
supported by both AAL1gator-8 and AAL1gator-4.

The API for this section of the AAL1gator-32 consists of only one function,
al3RAMConfig, which passes the RAM configuration parameters and performs the
necessary actions to configure the RAM interface according to the parameters.

RAM Initialization Profiles are included in Table 7, page 43

SBI Bus Configuration

The SBI (Scaleable Bandwidth Interconnect) Bus is a parallel bus used for transmitting
TDM data between physical and data link layer devices. This interface is one of the 4
possible TDM side interfaces that the AAL1gator-32 supports. The other 3 are the Direct
Line Low Speed, the H-MVIP bus and the Direct High Speed interface. The latter 2
require no software configuration. The AAL1gator-32’s SBI interface allows a lot of
flexibility in mapping SBI bus tributaries to AAL1gator-32 links. The SBI bus tributaries
can be T1, E1, or DS3 payloads. The AAL1gator-32’s SBI bus interface supports
handling all these tributary types, there are however some limitations. All tributaries in an
SPE (Synchronous Payload Envelope) must be of the same type and all AAL1gator-32
links in a link group must also be of the same type. There are 3 SPEs supported by the
SBI bus, and there are 2 16-link link groups inside the AAL1gator-32. Other than these
limitations, you are free to map the tributaries inside the SPEs on the SBI bus to any of
the AAL1gator-32’s thirty-two links.

The API for this section of the AAL1gator-32 consists of two functions, al3SBIConfig
and al3SBITribConfig. The first configures the 3 SPEs and 2 Link Groups according
to the parameters passed to it. The second configures the individual tributaries and maps
them to one of the 32 AAL1gator-32 links.

SBI Bus configuration profiles are included in Table 8, page 43.

Note: The SBI bus is not supported by the AAL1gator-8 and AAL1gator-4 devices.

Direct Line Interface Configuration

The Direct Line Low Speed interface is a direct clock and data interface to a T1/E1
framer. This interface is one of the 4 possible TDM side interfaces that the AAL1gator-32
supports. The other 3 are the SBI bus, the H-MVIP bus and the Direct High Speed
interface. The AAL1gator-8 and AAL1gator-4 do not support the SBI bus.

The AAL1gator-32 can support up to 16 direct low speed interfaces. The AAL1gator-8
can support up to 8 and the AAL1gator-4 can support up to 4.

 AAL1gator-32/-8/-4 Driver User’s Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 36

The API for this section of the AAL1gator-32 consists of one function,
al3DirectConfig, which configures the AAL1gator-32/-8/-4’s low speed direct line
interface based on the parameters passed to it.

Direct Line Interface configuration profiles are included in Table 11, page 44.

Alarms and Statistics

Most of the statistics for the AAL1gator-32 relate to the AAL1 channels provisioned
through it. There are some statistics related to OAM cells that are per AAL1 SAR
Processor (A1SP), although the Statistic Retrieval Functions for OAM statistics are per
device. There are 4 A1SPs in the AAL1gator-32, and 1 A1SP in both the AAL1gator-8
and AAL1gator-4.

Software extends statistics to 32-bits from 16 bits. A periodic task achieves this as part of
the Statistics Section. This task periodically polls all the hardware counters and updates
their software counterparts respectively. The user adjusts the period of this task’s
execution. The task calls sysAl3UpdateStats.

Alarms and Statistics functions also generate alarms. SBI bus tributary alarms are enabled
and disabled using al3EnableSBIAlarm and al3DisableSBIAlarm. Note: These
functions are only valid for the AAL1gator-32 device.

This section also allows you to force a high-speed line configured for DS3 to generate
cells with the AIS pattern using al3EnableDS3AISCells and
al3DisableDS3AISCells.

3.13 Constants

The driver code uses the following Constants:

�� <AL3_ERROR_CODES>: error codes used throughout the driver code, returned by the
API functions and used in the global error number field of the MDB and DDB.

�� AL3_MAX_DEVICES: defines the maximum number of devices supported by this
driver. This constant must not be changed without a thorough analysis of the
consequences to the driver code.

�� AL3_MAX_LINES: defines the maximum number of lines per device. This constant
must not be changed without a thorough analysis of the consequences to the driver
code. (Limit should be 32 for AAL1gator-32, 8 for AAL1gator-8 and 4 for
AAL1gator-4)

�� AL3_MAX_DIRECT: defines the maximum number of direct low speed line interfaces
per device. This constant must not be changed without a thorough analysis of the
consequences to the driver code. (Limit should be 16 for AAL1gator-32, 8 for
AAL1gator-8 and 4 for AAL1gator-4)

 AAL1gator-32/-8/-4 Driver User’s Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 37

�� AL3_MAX_SPES: defines the maximum number of synchronous payload envelopes
(SPEs) on the SBI bus for each device. This constant must not be changed without a
thorough analysis of the consequences to the driver code. (Limit should be 3).

�� AL3_MAX_TRIBS: defines the maximum number of tributaries inside each SPE on
the SBI bus for each device. This constant must not be changed without a thorough
analysis of the consequences to the driver code. (The maximum allowed tribs within
an SPE is 28 for T1, 21 for E1, and 1 for DS3).

�� AL3_MAX_LGRPS: defines the maximum number of link groups (line groups) per
device. This constant must not be changed without a thorough analysis of the
consequences to the driver code. (Limit should be 2).

�� AL3_MAX_QUEUES: defines the maximum number of AAL1 channel queues per
device. This constant must not be changed without a thorough analysis of the
consequences to the driver code. (Limit should be 1024 for AAL1gator-32, 256 for
ALL1gator-8, and 128 for ALL1gator-4).

�� AL3_MDB_USER_SIZE: defines the size in UINT4s of the User Defined field in the
MDB.

�� AL3_DDB_USER_SIZE: defines the size in UINT4s of the User Defined field in the
DDB.

3.14 Variables

Although variables within the driver are not meant to be used by the application code,
there are several that can used by the application code. They are to be considered read-
only by the application.

�� al3MDB: a global pointer to the Module Data Block (MDB). The MDB is only valid
if the ‘valid’ flag is set.

�� errModule: this MDB structure element is used to store an error code that specifies
the reason for an API function’s failure. The field is only valid when the function in
question returns an AL3_FAIL value.

�� modState: this MDB structure element stores the Module state.

�� modValid: this MDB structure element indicates that the MDB contains valid data.

�� al3DDB[]: An array of pointers to the individual Device Data Blocks. The DDB is
only valid if the ‘valid’ flag is set and that the array of DDBs is in no particular order.

�� errDevice: this MDB structure element stores an error code that specifies the
reason for an API function’s failure. The field is only valid when the function in
question returns an AL3_FAIL value. The various Read/Write API functions store
error codes here, as well as the Device Diagnostic functions.

 AAL1gator-32/-8/-4 Driver User’s Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 38

�� devState: this structure element stores the Device state.

�� devValid: this structure element indicates that the DDB contains valid data.

 AAL1gator-32/-8/-4 Driver User’s Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 39

4 DATA STRUCTURES

4.1 Data Structures

The following are the main data structures employed by the AAL1gator-32 driver.

AAL1 Channel Configuration Tables

The following tables detail the provisioning and configuring of AAL1 channels inside the
AAL1gator-32.

Table 1: AAL1 Channel Enhanced Parameters Default Values:
sAL3_CFG_CHAN_ENH

Field Name Default Value Field Type Field Description

partialFill 0x00 UINT1 Partial Cell Fill Char
rxMaxBuf Calculated Max

Buffer Size
UINT2 Maximum Buffer Size

rxCDVT 0x10 UINT2 Cell Delay Variation Tolerance
txSuppress Disabled UINT1 Suppress TX (0-Disable, 1-

Enable)
maintnBitInteg Disable UINT1 Maintain Bit Integrity through

Underrun (0-Disable, 1-Enable)
addQueOffset 0x00 UINT1 Add Queue Scheduling Offset
aal0Mode AAL1 UINT1 AAL0 Mode (0-AAL1, 1-AAL0)
txGfc 0x00 UINT1 GFC for TX VC
txPti 0x00 UINT1 PTI for TX VC
txClp 0x00 UINT1 CLP for TX VC
txHec Calculated

HEC
UINT1 HEC for TX VC

Table 2: AAL1 Channel Sequence Number Processing Default Values:
sAL3_CFG_CHAN_SNP

Field Name Default
Value

Field Type Field Description

snpAlgorithm Fast UINT1 RX SN Processing (0-Fast, 1-
Robust, 2-Disabled)

 AAL1gator-32/-8/-4 Driver User’s Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 40

Field Name Default
Value

Field Type Field Description

insertDataMode Insert AIS UINT1 Format of Data Inserted for
Lost Cells (0-Insert AIS, 1-
Insert Conditioned Data, 2-
Insert Old Data, 3-Insert
Conditioned Data with MSB
randomized)

insertCondCellData 0xFF UINT1 Value of conditioned data
inserted

maxInsert 6 UINT1 Maximum number of cells
inserted [1-7 cells]

noStartDrop Disabled UINT1 Don’t Drop First Cell (0-
Disabled, 1-Enabled)

Table 3: AAL1 Channel Conditioning Default Values: sAL3_CFG_CHAN_COND

Field Name Default Value Field Type Field Description

txCondMode Both UINT1 Conditioning Mode (0-Both, 1-
Only Signaling, 2-Only Data)

txCondSig 0x0 UINT1 TX Side Conditioned Signaling
Nibble

txCondData 0xFF UINT1 TX Side Conditioned Data Byte
rxCondSig 0x0 UINT1 RX Side Conditioned Signaling

Nibble
rxCondData 0xFF UINT1 RX Side Conditioned Data Byte
rxCondMode Conditioned

Data
UINT1 RX Underrun Data (0-

Conditioned Data, 1-
Conditioned Data with MSB
randomized, 2-Old Data)

rxSigMode Freeze Signaling UINT1 RX Underrun Signaling (0-
Freeze Signaling, 1-
Conditioned Signaling)

 AAL1gator-32/-8/-4 Driver User’s Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 41

Table 4: AAL1 Channel Idle Channel Detection Default Values:
sAL3_CFG_CHAN_IDET

Field Name Default Value Field Type Field Description

idleDetEnable Disable UINT2 Enable Idle Channel Detection
(0-Disable, 1-Enable [DBCES],
2-Enable [Non-DBCES])

rxCASPattern 0x00 UINT2 RX CAS Idle Pattern (CAS
Matching)

txCASPattern 0x00 UINT2 TX CAS Idle Pattern (CAS
Matching)

rxMask 0x00 UINT2 RX Mask (CAS or Processor
Matching)

txMask 0x00 UINT2 TX Mask (CAS or Processor
Matching)

idlePattern 0x00 UINT2 Idle Pattern (Pattern Matching)
patternMask 0x00 UINT2 Pattern Mask (Pattern

Matching)

.

Table 5: Global Clock Default Initialization Profile Values: sAL3_DIV_CLK

Field Name Default Value Field Type Field Description

adapFiltSize 0 UINT1 Adaptive Clock Filter Size (0-
>16)

nClkDivEnable Disabled UINT1 NCLK Division Enable (0-
Disabled, 1-Enabled)

nClkDivFactor 0 UINT1 NCLK Division Factor
[nClkDivFactor+2] (0->7)

UTOPIA/Any-PHY Bus Configuration Table

The following tables detail setting up the UTOPIA or Any-PHY bus on the AAL1gator -
32/-8/-4.

Table 6: UTOPIA/Any-PHY Default Initialization Profile Values: sAL3_DIV_UTOPIA

Field Name Default Value Field Type Field Description

enable Enabled UINT1 UTOPIA/Any-PHY bus enable
(0-Disabled, 1-Enabled)

 AAL1gator-32/-8/-4 Driver User’s Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 42

Field Name Default Value Field Type Field Description

vpiVciMapping Method 1 UINT1 VCI range used for mapping to
AAL1 Channel Queue numbers
(0-Method 1, 1-Method 2, 2-
Method 3)

loopbk None UINT1 UTOPIA/Any-PHY loopback
(0-None, 1-Remote, 2-VCI
Remote)

lpbkVci 0x1111 UINT1 UTOPIA/Any-PHY loopback
16bit VCI

srcAnyPhyMode UTOPIA UINT1 Source Any-PHY Mode (0-
UTOPIA, 1-Any-PHY)

srcBusWidth 16bit UINT1 Source UTOPIA/Any-PHY bus
width (0-8bit, 1-16bit)

srcUtopMode PHY UINT1 Source UTOPIA bus mode (0-
ATM, 1-PHY)

srcSlaveAddr 0x0000 UINT1 Source UTOPIA/Any-PHY 16-
bit slave address

srcParity Odd UINT1 Source UTOPIA/Any-PHY
parity (0-Odd, 1-Even)

srcCSMode Disabled UINT1 Source Any-PHY Chip Select
Mode (0-Disabled, 1-Enabled)

snkAnyPhyMode UTOPIA UINT1 Sink Any-PHY Mode (0-
UTOPIA, 1-Any-PHY)

snkBusWidth 16bit UINT1 Sink UTOPIA/Any-PHY bus
width (0-8bit, 1-16bit)

snkUtopMode PHY UINT1 Sink UTOPIA bus mode (0-
ATM, 1-PHY)

snkSlaveAddr 0x0000 UINT1 Sink UTOPIA/Any-PHY 16-bit
slave address

snkParity Odd UINT1 Sink UTOPIA/Any-PHY parity
(0-Odd, 1-Even)

snkCSMode Disabled UINT1 Sink Any-PHY Chip Select
Mode (0-Disabled, 1-Enabled)

RAM Interface Configuration Table

The following table depicts the default RAM configuration stored in the default
initialization profile.

 AAL1gator-32/-8/-4 Driver User’s Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 43

Table 7: RAM Default Initialization Profile Values: sAL3_DIV_RAM

Field Name Default Value Field Type Field Description

protocol SSRAM UINT1 SRAM protocol (0-SSRAM, 1-
ZBT)

parity Odd UINT1 SRAM parity type (0-Odd, 1-
Even)

SBI Bus Configuration Tables

The following tables depict the default SBI SPE and Link Group configuration stored in
the default initialization profile.

Table 8: SBI Bus Default Initialization Profile Values: sAL3_DIV_SBI

Field Name Default Value Field Type Field Description

mapEnable Mapping
Enabled

UINT1 Tributary mapping (0-Forced,
1-Forced on Extract Only, 2-
Forced on Insert Only, 3-
Mapping Enabled)

clkMaster Use Trib Cfg
Setting

UINT1 Force Clock Mastering (0-Use
Trib Cfg setting, 1-Force)

busMaster Disabled UINT1 Bus Master (0-Disabled, 1-
Enabled)

twoC1FPEnable Disabled UINT1 Separate C1FP for Insert and
Extract bus (0-Disabled, 1-
Enabled)

insBusParity Odd UINT1 Insert Bus parity (0-Even, 1-
Odd)

extBusParity Odd UINT1 Extract Bus parity (0-Even, 1-
Odd)

page 1 UINT1 Active Configuration Page (0-
Page 1, 1-Page 2)

speCfg

[AL3_MAX_SPES]

See below sAL3_DIV_SB
I_SPE

SPE (Synchronous Payload
Envelope) configuration

linkGrpCfg

[AL3_MAX_LGRPS]

See below sAL3_DIV_SB
I_LGRP

AAL1gator-32 Link Group
configuration

 AAL1gator-32/-8/-4 Driver User’s Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 44

Table 9: SBI Bus SPE Default Initialization Profile Values: sAL3_DIV_SBI_SPE

Field Name Default Value Field Type Field Description

speType DS1 UINT1 SPE type (0-DS1, 1-E1, 2-DS3)
speEnable Enable UINT1 SPE enable (0-Disable, 1-

Enable)
speSync Asynchronous UINT1 SPE sync (0-Asynchronous, 1-

Synchronous)

Table 10: SBI Bus Link Group Default Initialization Profile Values:
sAL3_DIV_SBI_LGRP

Field Name Default Value Field Type Field Description

lgrpType DS1 UINT1 Link Group type (0-DS1, 1-
E1, 2-DS3)

clkKill Disable UINT1 Clock Kill (0-Disable, 1-
Enable)

Direct Line Interface Configuration Table

The following table depicts the default Direct Low Speed configuration stored in the
default initialization profile.

Table 11: Direct Line Default Initialization Profile Values: sAL3_DIV_DIRECT

Field Name Default Value Field Type Field Description

syncMode Frame UINT1 Direct Line Sync Mode (0-
Frame, 1-MultiFrame)

mvipMode Disable UINT1 MVIP Mode (0-Disable, 1-
Enable)

4.2 Structures Passed by the Application

The application defines these structures and passes them by reference to functions within
the driver.

Module Initialization Vector

Passed via the al3ModuleOpen call, this structure contains all the information needed
by the driver to initialize and connect to the RTOS.

 AAL1gator-32/-8/-4 Driver User’s Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 45

�� maxDevs informs the Driver how many Devices will be operating concurrently
during this session. The number calculates the amount of memory allocated to the
driver. Memory is allocated in the al3ModuleOpen call. The maximum value passed
is AL3_MAX_DEVS.

�� autoStart tells the Driver to automatically start connecting to the RTOS. If the flag is
ZERO, the Module will be initialized only, and the application will have to call
al3ModuleStart at a later time.

�� diagOnInit is a flag that tells the Driver to run diagnostic routines when the device
initializes. If the flag is ZERO, the Module will be initialized only, and the
application will have to call the diagnostic routines directly.

Table 12: Module Initialization Vector: sAL3_MIV

Field Name Field Type Field Description

pMDB INT4 * Pointer to MDB
maxDevs UINT2 Maximum number of devices supported during this

session
maxInitProfs UINT2 Maximum number of initialization profiles
autoStart BOOLEAN If non-zero, al3ModuleStart is called internally
diagOnInit BOOLEAN If non-zero, diagnostic routines will be executed when

every device is initialized.

Initialization Profile

Initialization Profile Top-Level Structure

Passed via the al3SetInitProfile and or al3Init call, this structure contains all
the information needed by the driver to initialize and activate an AAL1gator-32 device.

�� autoActivate tells the Driver to activate the Device being initialized. If the flag is
ZERO, the Device will be initialized but left inactive, and the application will have to
call al3Activate at a later time.

Table 13: Initialization Profile: sAL3_DIV

Field Name Field Type Field Description

modeHS BOOLEAN High-Speed Mode
autoActivate BOOLEAN Indicates that the device should

be initialized directly to the
ACTIVE state by calling
al3Activate internally

 AAL1gator-32/-8/-4 Driver User’s Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 46

Field Name Field Type Field Description

cfgLINE[AL3_MAX_A1SPS
][AL3_LINES_PER_A1SP]

sAL3_DIV_LINE AAL1gator-32 Line
configuration block

cfgCLK[AL3_MAX_A1SPS] sAL3_DIV_CLK AAL1gator-32 Global Clock
configuration block

cfgUtopia sAL3_DIV_UTOPIA UTOPIA configuration block
cfgRam sAL3_DIV_RAM RAM configuration block
cfgSbi sAL3_DIV_SBI SBI Bus configuration block
cfgTRIB[AL3_SIZE_SPE]
[AL3_SIZE_TRIB]

sAL3_DIV_TRIB SBI Bus Tributary configuration
block

cfgDirect[AL3_SIZE_DI
RECT]

sAL3_DIV_DIRECT Direct Line configuration block

modeISR AL3_ISR_MODE Indicates the type of ISR/polling
to do

cbackA1SP sAL3_CBACK Address for the callback function
for A1SP Events

cbackUtopia sAL3_CBACK Address for the callback function
for UTOPIA bus Events

cbackRAM sAL3_CBACK Address for the callback function
for RAM Events

cbackSBI sAL3_CBACK Address for the callback function
for SBI bus Events

Initialization Profile Sub-Structures

Initialization Profile Sub-Structures appear in the initialization profile tables below.

Table 14: AAL1 Line Configuration: sAL3_DIV_LINE

Field Name Field Type Field Description

lowCDV UINT1 Low CDV (0-Disable [frame based scheduling], 1-
Enable [byte based scheduling])

refValEnable UINT1 Enable Reference Value generation (0-OFF, 1-ON)
t1Mode UINT1 Mode (0-E1, 1-T1)
sigType UINT1 Signaling (0-E1 with E1 signaling, 1-E1 with T1

signaling) [For E1 Line type only]
hiResClkSynth UINT1 Hi Resolution Clock Synthesis (0-Disable, 1-Enable)
mfAlign UINT1 Multiframe Align Enable (0-Disable, 1-Enable)

 AAL1gator-32/-8/-4 Driver User’s Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 47

Field Name Field Type Field Description

genSync UINT1 Generate TL_SYNC (0-Receive, 1-Generate)
txClkSrc UINT1 Tx Clock Source (0-External, 1-Looped, 2-Nominal,

3-SRTS, 4-Adaptive, 5-Externally Controlled, 6-
Common, 7-Common w/TL_SIG)

rxClkSrc UINT1 Rx Clock Source (0-External, 1-Common)
frameType UINT1 Frame Type (0-Unused, 1-SDF_FR, 2-UDF, 3-SDF-

MF)
srtsEnable UINT1 Enable SRTS (0-OFF, 1-ON)
srtsCDVT UINT1 SRTS CDVT (if enabled)
shiftCAS UINT1 CAS nibble shifting (0-coincident with the second

nibble of data, 1-coincident with the first nibble of
data)

iDetCfg UINT1 Idle Channel Detection Configuration:
0 - Disabled, 1 - Processor,
2 - CAS Matching, 3 - Pattern Matching

iDetIntvlLen UINT1 Interval Length

Table 15: Global Clock Configuration: sAL3_DIV_CLK

Field Name Field Type Field Description

adapFiltSize UINT1 Adaptive Clock Filter Size (0->16)
nClkDivEnable UINT1 NCLK Division Enable (0-Disabled, 1-Enabled)
nClkDivFactor UINT1 NCLK Division Factor [nClkDivFactor+2] (0->7)

Table 16: UTOPIA/Any-PHY Configuration: sAL3_DIV_UTOPIA

Field Name Field Type Field Description

enable UINT1 UTOPIA/Any-PHY bus enable (0-Disabled, 1-
Enabled)

vpiVciMapping UINT1 VPI:VCI mapping to AAL1 Channel Queue
numbers method (0-Method 1, 1-Method 2, 2-
Method 3 [for all UDF only]) [Please see Theory of
Operations for Mapping method explanations]

loopbk UINT1 UTOPIA/Any-PHY loopback (0-None, 1-Remote,
2-VCI Remote)

lpbkVci UINT1 UTOPIA/Any-PHY loopback 16bit VCI
srcAnyPhyMode UINT1 Source Any-PHY Mode (0-UTOPIA, 1-Any-PHY)
srcBusWidth UINT1 Source UTOPIA/Any-PHY bus width (0-8bit, 1-

16bit)

 AAL1gator-32/-8/-4 Driver User’s Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 48

Field Name Field Type Field Description

srcUtopMode UINT1 Source UTOPIA bus mode (0-L1 Master, 1-L1
Slave, 2-L2 Single Address Slave, 3-L2 Multiple
Address Slave)

srcSlaveAddr UINT1 Source UTOPIA/Any-PHY 16-bit slave address
srcParity UINT1 Source UTOPIA/Any-PHY parity (0-Odd, 1-Even)
srcCSMode UINT1 Source Any-PHY Chip Select Mode (0-Disabled, 1-

Enabled)
snkAnyPhyMode UINT1 Sink Any-PHY Mode (0-UTOPIA, 1-Any-PHY)
snkBusWidth UINT1 Sink UTOPIA/Any-PHY bus width (0-8bit, 1-16bit)
snkUtopMode UINT1 Sink UTOPIA bus mode (0-L1 Master, 1-L1 Slave,

2-L2 Single Address Slave, 3-L2 Multiple Address
Slave)

snkSlaveAddr UINT1 Sink UTOPIA/Any-PHY 16-bit slave address
snkParity UINT1 Sink UTOPIA/Any-PHY parity (0-Odd, 1-Even)
snkCSMode UINT1 Sink Any-PHY Chip Select Mode (0-Disabled, 1-

Enabled)

Table 17: RAM Configuration: sAL3_DIV_RAM

Field Name Field Type Field Description

protocol UINT1 SRAM protocol (0-SSRAM, 1-ZBT)
parity UINT1 SRAM parity type (0-Odd, 1-Even)

Table 18: SBI Bus Configuration: sAL3_DIV_SBI

Field Name Field Type Field Description

mapEnable UINT1 Tributary mapping (0-Forced, 1-
Mapping Enabled)

clkMaster UINT1 Force Clock Mastering (0-Use Trib
Cfg setting, 1-Force)

busMaster UINT1 Bus Master (0-Disabled, 1-Enabled)
twoC1FPEnable UINT1 Separate C1FP for Insert and Extract

bus (0-Disabled, 1-Enabled)
insBusParity UINT1 Insert Bus parity (0-Even, 1-Odd)
extBusParity UINT1 Extract Bus parity (0-Even, 1-Odd)
page UINT1 Active Configuration Page (0-Page 1,

1-Page 2)

 AAL1gator-32/-8/-4 Driver User’s Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 49

Field Name Field Type Field Description

speCfg
[AL3_MAX_SPES]

sAL3_CFG_SPE SPE (Synchronous Payload Envelope)
configuration

linkGrpCfg
[AL3_MAX_LGRPS]

sAL3_CFG_LGRP AAL1gator-32 Link Group
configuration

Table 19: SBI Bus SPE Configuration: sAL3_DIV_SPE

Field Name Field Type Field Description

speType UINT1 SPE type (0-DS1, 1-E1, 2-DS3)
speEnable UINT1 SPE enable (0-Disable, 1-Enable)
speSync UINT1 SPE sync (0-Asynchronous, 1-Synchronous)

Table 20: SBI Bus Link Group Configuration: sAL3_DIV_LGRP

Field Name Field Type Field Description

lgrpType UINT1 Link Group type (0-DS1, 1-E1, 2-DS3)
clkKill UINT1 Clock Kill (0-Disable, 1-Enable)

Table 21: SBI Bus Tributary Configuration: sAL3_DIV_TRIB

Field Name Field Type Field Description

link UINT1 Link (line number) associated with this trib
enable UINT1 Tributary Enable (0-Disabled, 1-Enabled, 2-Only

Insert Enabled, 3-Only Extract Enabled)
type UINT1 Tributary type (0-Structured w/CAS, 1-Structured

w/o CAS, 2-Unstructured)
insClkMaster UINT1 Tributary Clock Master on Insert Bus (0-Clock

slave, 1-Clock master)
extClkMaster UINT1 Tributary Clock Master on Extract Bus (0-Clock

slave, 1-Clock master)
extClkMode UINT1 Tributary Clock Mode for Extract Bus (0-

EXT_CKCTL, 1-ClkRate, 2-Phase)
insSynchMode UINT1 Tributary Synch for Insert Bus (0-Float, 1-Locked)

 AAL1gator-32/-8/-4 Driver User’s Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 50

Table 22: Direct Line Configuration: sAL3_DIV_DIRECT

Field Name Field Type Field Description

syncMode UINT1 Direct Line Sync Mode (0-Frame, 1-MultiFrame)
mvipMode UINT1 MVIP Mode (0-Disable, 1-Enable)

AAL1 Channel Configration Parameters

Table 23: AAL1 Standard Channel Configuration: sAL3_CFG_CHAN

Field Name Field Type Field Description

txVpi UINT2 VPI for TX VC
txVci UINT2 VCI for TX VC
rxVpi UINT2 VPI for RX VC
rxVci UINT2 VCI for RX VC
rxCheckParity UINT1 Parity Check (0-Off, 1-On)
suppressSignaling UINT1 Suppress Signaling (0-Off, 1-On) [for SDF-MF

only]

Table 24: AAL1 Enhanced Channel Configuration: sAL3_CFG_CHAN_ENH

Field Name Field Type Field Description

partialFill UINT1 Partial Cell Fill Char
rxMaxBuf UINT2 Maximum Buffer Size
rxCDVT UINT2 Cell Delay Variation Tolerance
txSuppress UINT1 Suppress TX (0-Disable, 1-Enable)
maintnBitInteg UINT1 Maintain Bit Integrity through Underrun condition

(0-Disable, 1-Enable)
addQueOffset UINT1 Add Queue Scheduling Offset
aal0Mode UINT1 AAL0 Mode (0-AAL1, 1-AAL0)
txGfc UINT1 GFC for TX VC
txPti UINT1 PTI for TX VC
txClp UINT1 CLP for TX VC

 AAL1gator-32/-8/-4 Driver User’s Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 51

Field Name Field Type Field Description

txHec UINT1 HEC for TX VC

Table 25: AAL1 Channel Sequence Number Processing Configuration:
sAL3_CFG_CHAN_SNP

Field Name Field
Type

Field Description

snpAlgorithm UINT1 RX SN Processing (0-Fast, 1-Robust, 2-Disabled)
insertDataMode UINT1 Format of Data Inserted for Lost Cells (0-Insert

AIS, 1-Insert Conditioned Data, 2-Insert Old Data,
3-Insert Conditioned Data with MSB randomized)

insertCondCellData UINT1 Value of conditioned data inserted
maxInsert UINT1 Maximum number of cells inserted [1-7 cells]
noStartDrop UINT1 Don’t Drop First Cell (0-Disabled, 1-Enabled)

Table 26: AAL1 Channel Conditioning Configuration: sAL3_CFG_CHAN_COND

Field Name Field Type Field Description

txCondMode UINT1 Conditioning Mode (0-Both, 1-Only Signaling, 2-Only
Data)

txCondSig UINT1 TX Side Conditioned Signaling Nibble
txCondData UINT1 TX Side Conditioned Data Byte
rxCondSig UINT1 RX Side Conditioned Signaling Nibble
rxCondData UINT1 RX Side Conditioned Data Byte
rxCondMode UINT1 RX Underrun Data (0- Conditioned Data, 1-Conditioned

Data with MSB randomized, 2-Old Data)
rxSigMode UINT1 RX Underrun Signaling (0-Freeze Signaling, 1-

Conditioned Signaling)

 AAL1gator-32/-8/-4 Driver User’s Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 52

Table 27: AAL1 Channel Idle Channel Detection Configuration:
sAL3_CFG_CHAN_IDET

Field Name Field Type Field Description

idleDetEnable UINT2 Enable Idle Channel Detection (0-Disable, 1-Enable
[DBCES], 2-Enable [Non-DBCES])

rxCASPattern UINT2 RX CAS Idle Pattern (CAS Matching)
txCASPattern UINT2 TX CAS Idle Pattern (CAS Matching)
rxMask UINT2 RX Mask (CAS or Processor Matching)
txMask UINT2 TX Mask (CAS or Processor Matching)
idlePattern UINT2 Idle Pattern (Pattern Matching)
patternMask UINT2 Pattern Mask (Pattern Matching)

Counter Specification

Table 28: Counter Specification: sAL3_CNTR_SPEC

Field Name Field Type Field Description

rdata UINT4 Read Data
wdata UINT4 Write Data
aspNum UINT2 A1SP Number (Not required if queId is specified)
lineNum UINT2 Line Number (Not required if queId is specified)
queNum UINT2 Queue Number (Not required if queId is specified)
queId sAL3_QID Queue Id
type AL3_CNTR_T

YPE
Counter Type To Return

Sticky Bit Error Word

Table 29: Sticky Bit Error Word: sAL3_STICKY

Field Name Field Type Field Description

transfer BOOLEAN Transferring data to the sticky bits
cellRcvd BOOLEAN A Cell was received
dbcesBitMaskErr BOOLEAN There was a parity error in the DBCES Bit Mask

 AAL1gator-32/-8/-4 Driver User’s Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 53

Field Name Field Type Field Description

transfer BOOLEAN Transferring data to the sticky bits
ptrRuleErr BOOLEAN There was a violation of a pointer generation rule
allocTblBlank BOOLEAN A cell was dropped because of a blank allocation

table
ptrSearch BOOLEAN A cell was dropped because a valid pointer has not

yet been found
forcedUndr BOOLEAN A cell was dropped because a forced underrun

condition exists
snCellDrop BOOLEAN A cell was dropped in accordance with the “SN

Algorithm”
ptrRcvd BOOLEAN A pointer was received
ptrParErr BOOLEAN A cell was received with a pointer parity error
srtsResume BOOLEAN An SRTS resume has occurred
srtsUndrn BOOLEAN A cell was received while the SRTS queue was in

underrun
resume BOOLEAN A resume has occurred; a valid cell was received

and stored into the buffer
ptrMismatch BOOLEAN A cell was dropped because of a pointer mismatch
overrun BOOLEAN A cell was dropped due to overrun
underrun BOOLEAN A cell was received while this queue was in

underrun

ISR Enable/Disable Mask

Passed via the al3MaskSet, al3MaskGet and al3MaskClear calls, ISR
Enable/Disable Mask contains all the information needed by the driver to enable and
disable any of the interrupts in the AAL1gator-32.

Note: For all interrupts in the ISR mask, there are masks that allow you to mask out a
whole group of interrupts. If you specify “Enable Some” for these you can mask the
interrupts individually.

Table 30: ISR Mask: sAL3_MASK

Field Name Field Type Field Description

ram1 UINT1 RAM 1 parity ram

ram2 UINT1 RAM 2 parity

 AAL1gator-32/-8/-4 Driver User’s Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 54

Field Name Field Type Field Description

alarmSBI UINT1 SBI Alarm
sync UINT1 Extract bus DC, SBIIP or

C1FP Error
fifoOvr UINT1 Extract FIFO Overrun
fifoUdr UINT1 Extract FIFO Underrun

exSBI

parity UINT1 Extract Bus Parity Error
sync UINT1 Insert bus DC, SBIIP or

C1FP Error
fifoOvr UINT1 Insert FIFO Overrun

inSBI

fifoUdr UINT1 Insert FIFO Underrun
master UINT1 A1SP in MASTER register
oam UINT1 A1SP OAM
talpFifoFull UINT1 A1SP TALP FIFO Full
frmAdvFifoFull UINT1 A1SP Frame Advance FIFO

Full
rxStatFifoFull UINT1 A1SP RX Status FIFO Full
rxStatFifoNotEmpty UINT1 A1SP RX Status FIFO Not

Empty
txIdleFifoFull UINT1 A1SP TX Idle State FIFO

Full

a1sp
[AL3_MAX_A1SPS]

txIdleFifoNotEmpty UINT1 A1SP TX Idle State FIFO
Not Empty

cellRx UINT1 Cell Received Sticky Bit
dbces UINT1 DBCES Bit Mask Error

Sticky Bit
ptrRule UINT1 Pointer Rule Error Sticky Bit
allocTbl UINT1 Allocation Table Blank

Sticky Bit
ptrSrch UINT1 Pointer Search Sticky Bit
fRedUndr UINT1 Forced Underrun Sticky Bit
snCellDrop UINT1 SN Cell Drop Sticky Bit
ptrRx UINT1 Pointer Received Sticky Bit
ptrParity UINT1 Pointer Parity Error Sticky

Bit

 sticky

srtsRes UINT1 SRTS Resume Sticky Bit

 AAL1gator-32/-8/-4 Driver User’s Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 55

Field Name Field Type Field Description

srtsUndr UINT1 SRTS Underrun Sticky Bit
res UINT1 Resume Sticky Bit
ptrMis UINT1 Pointer Mismatch Sticky Bit
ovr UINT1 Overrun Sticky Bit

undr UINT1 Underrun Sticky Bit
rxStatResync UINT1 Rx Line entered a resync

state
txStatResync UINT1 Tx Line entered a resync

state
rxStatBitmask UINT1 DBCES exited Underrun
rxStatUdrExit UINT1 QUEUE exited Underrun
rxStatUdrEnter UINT1 QUEUE entered Underrun

rxStatQueError UINT1 QUEUE Error (Sticky Bits)
parity UINT1 UTOPIA Parity
runtCell UINT1 UTOPIA Runt cell
transErr UINT1 UTOPIA Cell Transfer Error
fifo UINT1 UTOPIA FIFO Full

utopia

lpbkFifo UINT1 UTOPIA Loopback FIFO
Full

4.3 Structures in the Driver’s Allocated Memory

Structures located in the Driver’s Allocated Memory are used by the driver, and are part
of the context memory allocated when the driver is opened.

Module Data Block

The MDB is the top-level structure for the Module, containing configuration data about
the Module level code, and pointers to configuration data about Device level codes.

Table 31: Module Data Block: sAL3_MDB

Field Name Field Type Field Description

errModule INT4 Module based error code

 AAL1gator-32/-8/-4 Driver User’s Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 56

Field Name Field Type Field Description

maxDevs UINT2 Maximum number of devices that can be
added

maxDIVs UINT2 Maximum number of DIVs (profiles)
autoStart BOOLEAN Automatic start on Open
diagOnInit BOOLEAN Run diagnostics during the al3Init()
modState UINT2 Current module state
modValid UINT2 This structure is valid
numDevs UINT2 Current number of added devices
numDIVs UINT2 Current number of Added Profiles (DIVs)
timerModule void * (pointer to) Timer ID variable
semModule void * (pointer to) Semaphore ID variable
bufOK BOOLEAN sysAl3BufferStart succeeded
isrOK BOOLEAN sysAl3ISRHandlerInstall succeeded
appMDB BOOLEAN MDB memory was passed by the application
updActive BOOLEAN Statistics are being gathered.
vpiModeOK
[AL3_MAX_DEVICES]

BOOLEAN Accumulation of LINE modes

user
[AL3_MDB_USER_SIZE]

UINT4 Extra space for use by the Application

modMSB sAL3_MSB Module status block
divAddr sAL3_DIV * Address of the DIVs in the MDB
pDIV
[AL3_MAX_DIVS]

sAL3_DIV * DIV pointer array

ddbAddr sAL3_DDB * Address of the DDBs in the MDB
pDDB
[AL3_MAX_DEVICES]

sAL3_DDB * DDB pointer array

Device Data Block

The DDB is the top-level structure for each Device, containing configuration data about
the Device level code, and pointers to configuration data about Device level sub-blocks.

 AAL1gator-32/-8/-4 Driver User’s Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 57

Table 32: Device Data Block: sAL3_DDB

Field Name Field Type Field Description

errDevice INT4 Global return code for Device functions
baseAddr UINT2* Base address of the Device
usrCtxt void * Application-specific use
autoInit BOOLEAN Copy of flag from profile
divNum UINT2 Profile Number to be used for Initialization
modeISR AL3_ISR_MODE Indicates the current type of ISR/Polling
cbackRAM sAL3_CBACK RAM Events
cbackSBI sAL3_CBACK SBI Bus Events
cbackA1SP sAL3_CBACK A1SP Events
cbackUtopia sAL3_CBACK UTOPIA Bus Events
numQUE UINT2 Maximum Number of Queues for the Device
numA1SP UINT2 Maximum Number of A1SPs for the Device
numLINE UINT2 Maximum Number of Lines for the Device
numDIRECT UINT2 Maximum Number of Low Speed Lines for

the Device
ramEndAddr UINT4 SRAM ending address for the device
devState UINT2 Current state of the Device
devValid UINT2 Structure is Valid
devNum UINT2 Index into al3DDB[]
revision UINT2 Device Revision Data
lineMode UINT2 Current Line Mode
hwFail BOOLEAN HW Failure Flag
activePageEXSBI UINT2 Current ‘in-use’ page for EXSBI Block
activePageINSBI UINT2 Current ‘in-use’ page for INSBI Block

speNum UINT1 SPE number
tribNum UINT1 Tributary number
insPage UINT1 INSBI page

sbiLinkMap
[AL3_MAX_L
INES]

extPage UINT1 EXSBI page
statUpdateTime UINT4 Tracks STATS updates
statUpdatePeriod UINT4 Tracks STATS updates
txOAMCount
[AL3_MAX_A1SPS]

UINT2 per A1SP TX OAM Cell Counter

 AAL1gator-32/-8/-4 Driver User’s Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 58

Field Name Field Type Field Description

user
[AL3_DDB_USER_SIZE]

UINT4 USER data area

a1sp
[AL3_MAX_A1SP]

sAL3_ADB A1SP Structures (above)

mask sAL3_MASK ISR Mask
devDSB,
devCntr

sAL3_DSB Current Device Status Block (counters)

Module Status Block

The Module Status Block holds Alarm, Status and Statistics information for the Module,
as well as dynamic configuration information that can be modified by the USER.

Table 33: Module Status Block: sAL3_MSB

Field Name Field Type Field Description

valid UINT2 Indicates that this structure is valid
moduleOK UINT2 General health of the Module

Device Status Block

The Device Status Block holds Alarm, Status and Statistics information for the Device, as
well as dynamic configuration information that can be modified by the USER.

Table 34: Device Status Block: sAL3_DSB

Field Name Field
Type

Field Description

counter UINT4 Counter Return
Value

rxOAMCellCnt UINT4 RX OAM cell
count

rxDroppedOAMCellCnt

UINT4 RX dropped OAM
cell count

txOAMCellCnt

UINT4 TX OAM cell
count

a1sp
[AL3_MAX
_A1SP]

line[[AL3_
LINES_PER_
A1SP]

rxQue[AL3_
QUEUES_PER
LINE]

seqErrCnt UINT4 RX sequence error
count

 AAL1gator-32/-8/-4 Driver User’s Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 59

Field Name Field
Type

Field Description

badSNPCnt UINT4 RX bad SNP count
cellCnt UINT4 RX cell count
stickyBits UINT4 RX sticky bits
droppedCellCnt UINT4 RX dropped cell

count
underrunCnt UINT4 RX underrun count
lostCellCnt UINT4 RX lost cell count
overrunCnt UINT4 RX Overrun count
ptrReFrameCnt UINT4 RX pointer reframe

count
ptrPerrCnt UINT4 RX pointer parity

error count

_LINE]

misInsertedCel
lCnt

UINT4 RX misinserted cell
count

condCellCnt UINT4 TX conditioned cell
count

supCellCnt UINT4 TX suppressed cell
count

 A1SP]

rxQue[AL3_
QUEUES_PER
_LINE]

cellCnt UINT4 TX cell count

4.4 Structures Passed Through RTOS Buffers

Interrupt Service Vector

The Interrupt Service Vector is used in two ways. First, it determines the size of buffer
required by the RTOS for use in the driver. Second, it is the template for data captured
during ISR processing and thereafter sending it to the Deferred Processing Routine
(DPR).

Table 35: Interrupt Service Vector: sAL3_ISV

Field Name Field Type Field Description

devId sDEV_HNDL Device Handle
master UINT2 Master Interrupt

 AAL1gator-32/-8/-4 Driver User’s Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 60

Deferred Processing Vector

The Deferred Processing Vector is used in two ways. First, it determines the size of buffer
required by the RTOS for use in the driver. Second, it also acts as a template for data
assembled by the DPR and sent to the application code.

Note: the application code is responsible for returning this buffer to the RTOS buffer
pool.

Table 36: Deferred Processing Vector: sAL3_DPV

Field Name Field Type Field Description

data UINT2 Additional information describing the event
index UINT2 Additional information describing the event –

only used for A1SP event.

 AAL1gator-32/-8/-4 Driver User’s Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 61

5 APPLICATION PROGRAMMING INTERFACE
This section provides a detailed description of each function that is a member of the
AAL1gator-32 driver Application Programming Interface (API).

5.1 Module Initialization

Opening Modules: al3ModuleOpen

This function performs module level initialization of the device driver. This involves
allocating all of the memory needed by the driver and initializing the Module Data Block
(MDB) with the passed Module Initialization Vector (MIV).

Prototype INT4 al3ModuleOpen(sAL3_MIV *pMIV)

Inputs pMIV: (pointer to) Module Initialization Vector

Outputs pointer to MDB passed through the MIV

Returns Success = AL3_OK

Failure = <AL3 ERROR CODES>

Valid States MOD_START

Side Effects Changes the STATE of the MODULE to MOD_IDLE

Closing Modules: al3ModuleClose

This function performs module level shutdowns of the driver. This involves deleting all
devices controlled by the driver (by calling al3Delete for each device) and de-
allocating the MDB.

Prototype INT4 al3ModuleClose(void)

Inputs None

Outputs None

Returns Success = AL3_OK

Failure = <AL3 ERROR CODES>

Valid States ALL STATES except MOD_START

Side Effects Changes the STATE of the MODULE to MOD_START

 AAL1gator-32/-8/-4 Driver User’s Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 62

5.2 Module Activation

Starting Modules: al3ModuleStart

This function performs module level startup of the driver. This involves allocating RTOS
resources such as buffers, semaphores and timers AND installing the ISR handler and
DPR task.

Prototype INT4 al3ModuleStart(void)

Inputs None

Outputs None

Returns Success = AL3_OK

Failure = <AL3 ERROR CODES>

Valid States MOD_IDLE

Side Effects Changes MODULE state to MOD_READY

Stopping Modules: al3ModuleStop

This function performs module level shutdown of the driver. This involves deleting all
devices controlled by the driver and de-allocating all RTOS resources.

Prototype INT4 al3ModuleStop(void)

Inputs None

Outputs None

Returns Success = AL3_OK

Failure = <AL3 ERROR CODES>

Valid States READY and ALL DEVICE STATES

Side Effects Changes MODULE state to MOD_IDLE

 AAL1gator-32/-8/-4 Driver User’s Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 63

5.3 Profile Management

Creating Initialization Profiles: al3AddInitProfile

This function creates an initialization profile stored by the driver. Passing the
initialization profile number can initialize devices simply.

Prototype INT4 al3AddInitProfile(sAL3_DIV *pDIV, UINT2 *pDIVNum)

Inputs pDIV : pointer to initialization profile to be added
pDIVNum: (pointer to) a variable that holds
 the profile number

Outputs the resulting profile number

Returns Success = AL3_OK

Failure = <AL3 ERROR CODES>

Valid States ALL MODULE STATES except MOD_START

Side Effects None

Getting Initialization Profiles: al3GetInitProfile

This function Gets the contents of an initialization profile given its profile number.

Prototype INT4 al3GetInitProfile(UINT2 profNum, sAL3_DIV *pDIV)

Inputs profNum: profile number
pDIV: pointer to profile

Outputs the resulting profile data

Returns Success = AL3_OK

Failure = <AL3 ERROR CODES>

Valid States ALL MODULE STATES except MOD_START

Side Effects None

Deleting Initialization Profiles: al3DeleteInitProfile

This function deletes an initialization profile given its profile number.

 AAL1gator-32/-8/-4 Driver User’s Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 64

Prototype INT4 al3DeleteInitProfile(UINT2 profNum)

Inputs profNum: initialization profile number

Outputs None

Returns Success = AL3_OK

Failure = <AL3 ERROR CODES>

Valid States ALL MODULE STATES except MOD_START

Side Effects None

5.4 Device Initialization

Initializing Devices: al3Init

This function initializes the Device Data Block (DDB) associated to that device during
al3Add, applies a reset to the device itself, and configures it according to the profile
number passed by the Application. This function also calls the al3Activate function
directly when the autoActivate flag is set in the profile. This function can also
automatically run some diagnostics on the device before configuring it. This occurs if the
diagOnInit flag was set in the MIV used in the al3ModuleOpen function call.

Prototype INT4 al3Init(sDEV_HNDL devId, sAL3_DIV *pDIV,
UINT2 profileNum)

Inputs devId: device Handle (from al3Add)
pDIV: (pointer to) the profile for this Device - OR -

profileNum: profile number

Outputs None

Returns Success = AL3_OK

Failure = <AL3 ERROR CODES>

Valid States (MOD_READY) PRESENT

Side Effects Change DEVICE state to INACTIVE

Resetting Devices: al3Reset

This function applies a software reset to the AAL1gator-32 device. The function also
resets all the DDB contents (except for the user context). This function is typically called
before re-initializing the device.

 AAL1gator-32/-8/-4 Driver User’s Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 65

Prototype INT4 al3Reset(sDEV_HNDL devId)

Inputs devId: device Handle (from al3Add)

Outputs None

Returns Success = AL3_OK

Failure = <AL3 ERROR CODES>

Valid States (MOD_READY) INACTIVE ACTIVE

Side Effects Changes DEVICE state to PRESENT

5.5 Device Addition and Deletion

Adding Devices: al3Add

This function verifies the presence of a new device in the hardware; configures a Device
Data block (DDB); stores the contents of the passed Device Initialization Vector (DIV),
and passes a pointer to the DDB.

Prototype sDEV_HNDL al3Add(void *usrCtxt, UINT2 *baseAddr,
INT4 **pperrDevice)

Inputs usrCtxt: pointer to user context

baseAddr: pointer to base address

pperrDevice: pointer to the location for the pointer of the
device error to be stored

Outputs Places a pointer to the DDB into the DIV passed by the
Application.

Returns Success = Device handle

Failure = NULL

Valid States (MOD_READY) START

Side Effects Changes the DEVICE state to PRESENT

Deleting Devices: al3Delete

This function removes the specified device from the list of devices controlled by the
AAL1gator-32 driver. Deleting a device involves clearing the DDB for that device and
releasing its associated device handle.

Prototype INT4 al3Delete(sDEV_HNDL devId)

Inputs devId: device Handle (from al3Add)

 AAL1gator-32/-8/-4 Driver User’s Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 66

Outputs None

Returns Success = AL3_OK

Failure = <AL3 ERROR CODES>

Valid States (MOD_READY) PRESENT INACTIVE ACTIVE

Side Effects Device state changed to START

5.6 Device Activation and De-Activation

Activating Devices: al3Activate

This function restores the state of a device after a de-activate. Interrupts may be re-
enabled; queues are not restored.

Prototype INT4 al3Activate(sDEV_HNDL devId)

Inputs devId: device Handle (from al3Add)

Outputs None

Returns Success = AL3_OK

Failure = <AL3 ERROR CODES>

Valid States (MOD_READY) INACTIVE

Side Effects Change the DEVICE state to ACTIVE

Deactivating Devices: al3DeActivate

This function de-activates the device from operation. Interrupts are masked and the
device is put into the soft reset state.

Prototype INT4 al3DeActivate(sDEV_HNDL devId)

Inputs devId: device Handle (from al3Add)

Outputs None

Returns Success = AL3_OK

Failure = <AL3 ERROR CODES>

Valid States (MOD_READY) ACTIVE

Side Effects Changes the DEVICE state to INACTIVE

 AAL1gator-32/-8/-4 Driver User’s Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 67

5.7 Device Reading and Writing

Reading from Devices: al3Read

This function reads a register of a specific AAL1gator-32 device by providing the register
number. This function derives the actual address location based on the device handle and
register number inputs. It then reads the contents of this address location using the system
specific macro, sysAl3ReadReg.

 Note: A failure to read returns a zero and any error indication writes to the DDB.

Prototype UINT2 al3Read(sDEV_HNDL devId, UINT4 regNum)

Inputs devId : device Handle (from al3Add)

regNum : register number

Outputs ERROR code written to the DDB

Returns Success = the register value

Failure = 0x00

Valid States (MOD READY) PRESENT, ACTIVE, INACTIVE

Side Effects May affect registers that change after a read operation

Writing to Devices: al3Write

This function writes to a register of a specific AAL1gator-32 device by providing the
register number. This function derives the actual address location based on the device
handle and register number inputs. It then writes the contents of this address location
using the system specific macro, sysAl3WriteReg.

Note: A failure to write returns a zero and any error indication writes to the DDB

Prototype UINT2 al3Write(sDEV_HNDL devId, UINT4 regNum, UINT2 wdata)

Inputs devId : device Handle (from al3Add)

regNum : register number value: value to be written

wdata : data to write

Outputs ERROR code written to the DDB

Returns Success = pre-READ register value

Failure = 0x00

Valid States (MOD_READY) PRESENT, ACTIVE, INACTIVE

Side Effects May change the configuration of the Device; some registers
require unused bits to be '0'

 AAL1gator-32/-8/-4 Driver User’s Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 68

Reading from Register Blocks: al3ReadBlock

This function reads from a block of Device Registers. It can be used to read a contiguous
register block of a specified Aal1gator 32/8/4 device by providing the starting register
number, and the number of registers to read. This function derives the actual start address
location based on the device handle and starting register number inputs. It then reads the
contents of the associated register data block using multiple calls to the system specific
macro, sysAl3ReadReg.

Note: A failure to read returns a zero and any error indication writes to the associated
DDB.

Prototype UINT2 al3ReadBlock(sDEV_HNDL devId, UINT4 regNum, UINT4
length, UINT2 *pBlock)

Inputs devId: device Handle (from al3Add)

regNum: register number

length: number of registers to read

pBlock: (pointer to) block read area

Outputs ERROR code written to the DDB
pBlock is filled with the register data

Returns Success = last value read

Failure = 0x00

Valid States (MOD READY) PRESENT, ACTIVE, INACTIVE

Side Effects May affect registers that change after a read operation

Writing to Register Blocks: al3WriteBlock

This function writes to a block of Device Registers. It can be used to write a contiguous
register block of a specified Aal1gator 32/8/4 device by providing the starting register
number, and the number of registers to write. This function derives the actual start
address location based on the device handle and starting register number inputs. It then
writes the contents of the associated register data block using multiple calls to the system
specific macro, sysAl3WriteReg.

Note: A failure to write returns a zero and any error indication writes to the associated
DDB.

Prototype UINT2 al3WriteBlock(sDEV_HNDL devId, UINT4 regNum, UINT4
length, UINT2 *pBlock)

Inputs devId: device Handle (from al3Add)

regNum: start of block register

length: number of registers in the block

pBlock: (pointer to) block of write data

 AAL1gator-32/-8/-4 Driver User’s Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 69

Outputs ERROR code written to the DDB

Returns Success = last previous value found

Failure = 0x00

Valid States (MOD READY) PRESENT, ACTIVE, INACTIVE

Side Effects May change the configuration of the device

Reading from Indirect Registers: al3ReadInd

This function reads an Indirect Device register. It can be used to Write an Indirect control
or mapping register of the SBI block of a specified Aal1gator 32/8/4 device by providing
the Page, SPE & Tributary numbers to read. This function derives the actual start address
location based on the device handle and input parameters. It then reads the contents of the
associated register data block using the system specific macro, sysAl3ReadReg

Note: A failure to read returns a zero and any error indication writes to the associated
DDB.

Prototype UINT2 al3ReadInd(sDEV_HNDL devId, AL3_SECTION section,
BOOLEAN map, UINT2 pageNum, UINT2 speNum, UINT2 tribNum)

Inputs devId: device Handle (from al3Add)

section: INSBI or EXSBI
map: read from control registers or map registers

pageNum: SBI memory page

speNum: SBI SPE

tribNum: SBI tributary

Outputs ERROR code written to the DDB

Returns Success = last value read

Failure = 0x00

Valid States (MOD READY) PRESENT, ACTIVE, INACTIVE

Side Effects May affect registers that change after a read operation

Writing to Indirect Registers: al3WriteInd

This function writes to an Indirect Device register. It can be used to Write an Indirect
control or mapping register of the SBI block of a specified Aal1gator 32/8/4 device by
providing the Page, SPE & Tributary numbers to read. This function derives the actual
start address location based on the device handle and input parameters. It then reads the
contents of the associated register data block using the system specific macro,
sysAl3WriteReg.

 AAL1gator-32/-8/-4 Driver User’s Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 70

Note: A failure to write returns a zero and any error indication writes to the associated
DDB.

Prototype UINT2 al3WriteInd(sDEV_HNDL devId, AL3_SECTION section,
BOOLEAN map, UINT2 pageNum, UINT2 speNum, UINT2 tribNum,
UINT2 wdata)

Inputs devId: device Handle (from al3Add)

section: INSBI or EXSBI

map: read from control registers or map registers

pageNum: SBI memory page

speNum: SBI SPE

tribNum: SBI tributary

wdata: write data

Outputs ERROR code written to the DDB

Returns Success = last previous value found

Failure = 0x00

Valid States (MOD READY) PRESENT, ACTIVE, INACTIVE

Side Effects May change the configuration of the device

5.8 AAL1 Channel Provisioning

Setting Line Modes: al3SetLineMode

This function sets the line mode for one of the AAL1gator-32 lines.

Prototype INT4 al3SetLineMode(sDEV_HNDL devId, UINT2 linkNum,
sAL3_DIV_LINE *pParms)

Inputs devId: device Handle (from al3Add)
linkNum: A1SP, Line number
pParms: points to LINE parameters structure

Outputs None

Returns Success = AL3_OK

Failure = <AL3 ERROR CODES>

Valid States (MOD_READY) ACTIVE

Side Effects None

 AAL1gator-32/-8/-4 Driver User’s Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 71

Configuring Underrun Data: al3SetUnderrun

This function configures Underrun Data and Signaling on a timeslot basis. Only use this
function, if you want to specify separate underrun parameters for each timeslot in a given
queue.

Prototype INT4 al3SetUnderrun(sDEV_HNDL devId, UINT2 linkNum, UINT2
timeSlot, UINT2 rxData, UINT2 rxSig)

Inputs devId: device Handle (from al3Add)

linkNum: specifies the line number to configure

timeSlot: specifies the timeslot to configure

rxData: new default Rx Conditioned Data

rxSig: new default Rx Conditioned Signaling Data

Outputs None

Returns Success = AL3_OK

Failure = <AL3 ERROR CODES>

Valid States (MOD_READY) ACTIVE

Side Effects None

Setting Global Clock Configuration: al3GlobalClkConfig

This function sets the Global clock configuration for the AAL1gator-32 device.

Prototype INT4 al3GlobalClkConfig(sDEV_HNDL devId, sAL3_DIV_CLK
*pParms)

Inputs devId: device Handle (from al3Add)
pParms: points to Config params

Outputs None

Returns Success = AL3_OK

Failure = <AL3 ERROR CODES>

Valid States (MOD_READY) ACTIVE

Side Effects None

Activating Channels: al3ActivateChannel

This function maps the channels of a T1 or an E1 line in Structured Data Format (SDF) or
the entire line in Unstructured Data Format (UDF) to a VP/VC. al3ActivateChannel
returns a queue handle for future mapping operations.

 AAL1gator-32/-8/-4 Driver User’s Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 72

Prototype INT4 al3ActivateChannel(sDEV_HNDL devId, sAL3_QID *queId,
UINT2 txLink, UINT4 channels, sAL3_CFG_CHAN *pParms)

Inputs devId: device Handle (from al3Add)

queId: pointer to queue handle

txLink: A1SP, Line & Queue Number
channels: bitmap of channels to activate
pParms: (pointer to) configuration structure

Outputs Queue Id via the parameter '*queId'

Returns Success = AL3_OK

Failure = <AL3 ERROR CODES>

Valid States (MOD READY) ACTIVE

Side Effects None

Deactivating Channels: al3DeActivateChannel

This function deactivates the line that is in use, and frees the queue handle.

Prototype INT4 al3DeActivateChannel (sDEV_HNDL devId, sAL3_QID
queId)

Inputs devId: device Handle (from al3Add)

queId: specifies the queue handle for the line

Outputs None

Returns Success = AL3_OK

Failure = <AL3 ERROR CODES>

Valid States (MOD READY) ACTIVE

Side Effects None

Activating Channels with Enhanced Parameters:
al3EnhancedActivateChannel

This function maps the channels of a T1 or an E1 line in Structured Data Format (SDF) or
the entire line in Unstructured Data Format (UDF) to a VP/VC. It also returns a queue
handle used for future operations on the mapping. In addition to the abilities of the
aal1ActivateChannel function, this function also enables the extend parameters used
in configuring the mapping, as well as parameters for configuring Sequence Number
Processing, Conditioning, and Idle Channel Detection. Passing a NULL Pointer in place
of a pointer to any of the configuration parameter data structures results in the function
using the default parameters for that data structure.

 AAL1gator-32/-8/-4 Driver User’s Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 73

Note: Passing a NULL Pointer in place of a pointer to any of the configuration parameter
data structures results in the function using the default parameters for that data structure.

Prototype INT4 al3EnhancedActivateChannel(sDEV_HNDL devId, sAL3_QID
*queId, UINT2 txLink, UINT4 channels, sAL3_CFG_CHAN
*pParms, sAL3_CFG_CHAN_ENH *pEnhParms, sAL3_CFG_CHAN_SNP
*pSNPParms, sAL3_CFG_CHAN_COND *pCondParms,
sAL3_CFG_CHAN_IDET *pIDetParms)

Inputs devId: device Handle (from al3Add)
queId: pointer to queue handle
txLink: A1SP, Line & Queue Number
channels: bitmap of channels to activate
pParms: (pointer to) configuration structure
pEnhParms: (pointer to) Enhanced parameters
pSNPParms: (pointer to) Sequence Number Processing
 parameters
pCondParms: (pointer to) Conditioning parameters
pIDetParms: (pointer to) Idle Detection parameters

Outputs Queue Id via the parameter '*queId'

Returns Success = AL3_OK

Failure = <AL3 ERROR CODES>

Valid States (MOD READY) ACTIVE

Side Effects None

Activating Unstructured Channels: al3ActivateChannelUnstr

This function activates a line of the device in Unstructured Data Format (UDF) mode.
Returns a queue handle for future operations on the queue.

Prototype INT4 al3ActivateChannelUnstr(sDEV_HNDL devId, sAL3_QID
*queId, UINT2 txLink, sAL3_CFG_CHAN *pParms)

Inputs devId: device Handle (from al3Add)
queId: pointer to queue handle
txLink: A1SP, Line & Queue Number
pParms: (pointer to) configuration structure

Outputs Queue Id via the parameter '*queId'

Returns Success = AL3_OK

Failure = <AL3 ERROR CODES>

Valid States (MOD READY) ACTIVE

Side Effects None

 AAL1gator-32/-8/-4 Driver User’s Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 74

Activating Unstructured Channels with Enhanced Parameters:
al3EnhancedActivateChannelUnstr

This function activates a line of the device in Unstructured Data Format (UDF) mode.
al3EnhancedActivateChannelUnstr returns a queue handle enabling future
operations on the line. In addition to the abilities of the aal1ActivateLine function,
this function also provides the user the ability to provide extended parameters used in
configuring the line, as well as parameters for configuring Sequence Number Processing,
Conditioning, and Idle Channel Detection. Passing a NULL Pointer in place of a pointer
to any of the configuration parameter data structures results in the function using the
default parameters for that data structure.

Note: Passing a NULL Pointer in place of a pointer to any of the configuration parameter
data structures results in the function using the default parameters for that data structure.

Prototype INT4 al3EnhancedActivateChannelUnstr(sDEV_HNDL devId,
sAL3_QID *queId, UINT2 txLink, sAL3_CFG_CHAN *pParms,
sAL3_CFG_CHAN_ENH *pEnhParms, sAL3_CFG_CHAN_SNP pSNPParms,
sAL3_CFG_CHAN_COND *pCondParms, sAL3_CFG_CHAN_IDET
*pIDetParms)

Inputs devId: device Handle (from al3Add)
queId: pointer to queue handle
txLink : A1SP, Line & Queue Number
pParms : (pointer to) configuration structure
pEnhParms : (pointer to) Enhanced parameters
pSNPParms : (pointer to) Sequence Number Processing
 parameters
pCondParms: (pointer to) Conditioning parameters
pIDetParms: (pointer to) Idle Detection parameters

Outputs Queue Id via the parameter '*queId'

Returns Success = AL3_OK

Failure = <AL3 ERROR CODES>

Valid States (MOD READY) ACTIVE

Side Effects None

Deactivating Unstructured Channels: al3DeActivateChannelUnstr

This function deactivates the line that is in use, and frees the queue handle.

Prototype INT4 al3DeActivateChannelUnstr(sDEV_HNDL devId,
sAL3_QID queId)

Inputs devId: device Handle (from al3Add)

queId: specifies the queue handle for the line

Outputs None

 AAL1gator-32/-8/-4 Driver User’s Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 75

Returns Success = AL3_OK

Failure = <AL3 ERROR CODES>

Valid States (MOD READY) ACTIVE

Side Effects None

Activating Structured Channels : al3ActivateChannelStr

This function maps the channels of a T1 or an E1 line in Structured Data Format (SDF) to
a VP/VC. Returns a queue handle that will be used for future operations on the mapping.

Prototype INT4 al3ActivateChannelStr(sDEV_HNDL devId,
sAL3_QID *queId, UINT2 txLink, UINT4 channels,
sAL3_CFG_CHAN *pParms)

Inputs devId: device Handle (from al3Add)
queId: pointer to queue handle
txLink: A1SP, Line & Queue Number
channels: bitmap of channels to activate
pParms: (pointer to) configuration structure

Outputs Queue Id via the parameter '*queId'

Returns Success = AL3_OK

Failure = <AL3 ERROR CODES>

Valid States (MOD READY) ACTIVE

Side Effects None

Activating Structured Channels With Enhanced Parameters:
al3EnhancedActivateChannelStr

This function maps the channels of a T1 or an E1 line in Structured Data Format (SDF) to
a VP/VC. Returns a queue handle used for future operations on the mapping. In addition
to the abilities of the aal1ActivateChannel function, this function provides the user
the ability to provide extended parameters used in configuring the mapping, as well as
parameters for configuring Sequence Number Processing, Conditioning, and Idle
Channel Detection. Passing a NULL Pointer in place of a pointer to any of the
configuration parameter data structures results in the function using the default
parameters for that data structure.

Note: Passing a NULL Pointer in place of a pointer to any of the configuration parameter
data structures results in the function using the default parameters for that data structure.

Prototype INT4 al3EnhancedActivateChannelStr(sDEV_HNDL
devId, sAL3_QID *queId, UINT2 txLink, UINT4
channels, sAL3_CFG_CHAN *pParms,
sAL3_CFG_CHAN_ENH *pEnhParms, sAL3_CFG_CHAN_SNP

 AAL1gator-32/-8/-4 Driver User’s Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 76

*pSNPParms, sAL3_CFG_CHAN_COND *pCondParms,
sAL3_CFG_CHAN_IDET *pIDetParms)

Inputs devId: device Handle (from al3Add)

queId: pointer to queue handle
txLink: A1SP, Line & Queue Number
channels: bitmap of channels to activate
pParms: (pointer to) configuration structure
pEnhParms: (pointer to) Enhanced parameters
pSNPParms: (pointer to) Sequence Number Processing
 parameters
pCondParms: (pointer to) Conditioning parameters
pIDetParms: (pointer to) Idle Detection parameters

Outputs Queue Id via the parameter '*queId'

Returns Success = AL3_OK

Failure = <AL3 ERROR CODES>

Valid States (MOD READY) ACTIVE

Side Effects None

Deactivating Structured Channels: al3DeActivateChannelStr

This function deactivates the channels on a line that is (are) in use, and frees the queue
handle.

Prototype INT4 al3DeActivateChannelStr(sDEV_HNDL devId,
sAL3_QID queId)

Inputs devId: device Handle (from al3Add)

queId: specifies the queue handle for the channels

Outputs None

Returns Success = AL3_OK

Failure = <AL3 ERROR CODES>

Valid States (MOD READY) ACTIVE

Side Effects None

Associating Channels With An Existing Mapping:
al3AssociateChannel

This function associates more T1/E1 timeslots to an existing mapping. After configuring
the mapping, it enables it.

Prototype INT4 al3AssociateChannel(sDEV_HNDL devId,
sAL3 QID queId UINT4 chanMap)

 AAL1gator-32/-8/-4 Driver User’s Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 77

sAL3_QID queId, UINT4 chanMap)

Inputs devId: device Handle (from al3Add)

queId : specifies the queue handle for the channels

chanMap: bitmap of the channels to add

Outputs None

Returns Success = AL3_OK

Failure = <AL3 ERROR CODES>

Valid States (MOD READY) ACTIVE

Side Effects None

Disassociating Channels With An Existing Mapping:
al3DisAssociateChannel

This function disassociates already mapped T1/E1 timeslots from an existing mapping.
After reconfiguring the mapping, the function enables it.

Prototype INT4 al3DisAssociateChannel (sDEV_HNDL devId,
sAL3_QID queId, UINT4 chanMap)

Inputs devId: device Handle (from al3Add)

queId : specifies the queue handle for the channels

chanMap: bitmap of the channels to remove

Outputs None

Returns Success = AL3_OK

Failure = <AL3 ERROR CODES>

Valid States (MOD READY) ACTIVE

Side Effects None

5.9 Channel Conditioning

Enabling Transmit Conditioning: al3EnableTxCond

This function enables transmit conditioning for an existing channel(s) to VP/VC
mapping.

Prototype INT4 al3EnableTxCond(sDEV_HNDL devId, sAL3_QID
queId)

Inputs devId: device Handle (from al3Add)

 AAL1gator-32/-8/-4 Driver User’s Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 78

queId: specifies the queue handle for the channels

Outputs None

Returns Success = AL3_OK

Failure = <AL3 ERROR CODES>

Valid States (MOD_READY) ACTIVE

Side Effects None

Disabling Transmit Conditioning: al3DisableTxCond

This function disables transmit conditioning for an existing channel(s) to VP/VC
mapping.

Prototype INT4 al3DisableTxCond(sDEV_HNDL devId, sAL3_QID
queId)

Inputs devId: device Handle (from al3Add)

queId: specifies the queue handle for the channels

Outputs None

Returns Success = AL3_OK

Failure = <AL3 ERROR CODES>

Valid States (MOD_READY) ACTIVE

Side Effects None

Enabling Receive Conditioning: al3EnableRxCond

This function enables receive conditioning for an existing channel(s) to VP/VC mapping.

Prototype INT4 al3EnableRxCond(sDEV_HNDL devId, sAL3_QID
queId)

Inputs devId: device Handle (from al3Add)

queId: specifies the queue handle for the channels

Outputs None

Returns Success = AL3_OK

Failure = <AL3 ERROR CODES>

Valid States (MOD_READY) ACTIVE

Side Effects None

 AAL1gator-32/-8/-4 Driver User’s Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 79

Disabling Receive Conditioning: al3DisableRxCond

This function disables receive conditioning for an existing channel(s) to VP/VC mapping.

Prototype INT4 al3DisableRxCond(sDEV_HNDL devId, sAL3_QID
queId)

Inputs devId: device Handle (from al3Add)

queId: specifies the queue handle for the channels

Outputs None

Returns Success = AL3_OK

Failure = <AL3 ERROR CODES>

Valid States (MOD_READY) ACTIVE

Side Effects None

5.10 SRTS Functions

Enabling SRTS: al3EnableSRTS

This function enables SRTS for the given T1 or E1 line. SRTS can only be enabled if the
line is in UDF mode.

Prototype INT4 al3EnableSRTS(sDEV_HNDL devId, UINT2
linkNum)

Inputs devId: device Handle (from al3Add)
linkNum: A1SP, Line numbers

Outputs None

Returns Success = AL3_OK

Failure = <AL3 ERROR CODES>

Valid States linkNum - A1SP, Line numbers

Side Effects None

Disabling SRTS: al3DisableSRTS

This function disables SRTS for the given T1 or E1 line.

Prototype INT4 al3DisableSRTS(sDEV_HNDL devId, UINT2 linkNum)

Inputs devId: device Handle (from al3Add)
linkNum: A1SP, Line numbers

Outputs None

Returns Success = AL3_OK

 AAL1gator-32/-8/-4 Driver User’s Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 80

Failure = <AL3 ERROR CODES>

Valid States (MOD_READY) ACTIVE

Side Effects None

5.11 Loopback Functions

Enabling Loopbacks: al3EnableLpbk

This function enables loopback for the specified AAL1 channel Q. The loopback is
performed before the AAL1 cells that are coming from the Line Interface reach the
UTOPIA interface.

Prototype INT4 al3EnableLpbk(sDEV_HNDL devId, sAL3_QID queId)

Inputs devId: device Handle (from al3Add)

queId: AAL1 channel queue Handle (from
 al3ActivateChannel)

Outputs None

Returns Success = AL3_OK

Failure = <AL3 ERROR CODES>

Valid States (MOD_READY) ACTIVE INACTIVE

Side Effects None

Disabling Loopbacks: al3DisableLpbk

This function disables loopback for the specified AAL1 channel Q. The loopback is
performed before the AAL1 cells that are coming from the Line Interface reach the
UTOPIA interface.

Prototype INT4 al3DisableLpbk(sDEV_HNDL devId, sAL3_QID queId)

Inputs devId: device Handle (from al3Add)

queId: AAL1 channel queue Handle (from
 al3ActivateChannel)

Outputs None

Returns Success = AL3_OK

Failure = <AL3 ERROR CODES>

Valid States (MOD_READY) ACTIVE INACTIVE

Side Effects None

 AAL1gator-32/-8/-4 Driver User’s Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 81

Enabling Utopia Loopbacks: al3UtopiaLpbkEnable

This function enables a loopback at the Utopia interface.

Prototype INT4 al3UtopiaLpbkEnable (sDEV_HNDL devId, BOOLEAN
vciMode, UINT2 lpbkVci)

Inputs devId: device Handle (from al3Add)
vciMode: flag that enables VCI checking
lpbkVci: vci of the looped data

Outputs None

Returns Success = AL3_OK

Failure = <AL3 ERROR CODES>

Valid States (MOD_READY) ACTIVE INACTIVE

Side Effects May Set / Clear any register in the Device

Disabling Utopia Loopbacks: al3UtopiaLpbkDisable

This function disables a loopback at the Utopia interface.

Prototype INT4 al3UtopiaLpbkDisable (sDEV_HNDL devId)

Inputs devId: device Handle (from al3Add)

Outputs None

Returns Success = AL3_OK

Failure = <AL3 ERROR CODES>

Valid States (MOD_READY) ACTIVE INACTIVE

Side Effects May Set / Clear any register in the Device

5.12 Idle Detection Functions

Setting Activate Timeslots: al3SetTimeslotActive

This function uses with processor-based Idle Channel Detection. This function sets a
timeslot as active.

Prototype INT4 al3SetTimeslotActive(sDEV_HNDL devId, UINT2 linkNum,
UINT2 timeSlot)

Inputs devId: device Handle (from al3Add)

linkNum: specifies the line number to set

 AAL1gator-32/-8/-4 Driver User’s Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 82

timeSlot: specifies the timeslot to set Active

Outputs None

Returns Success = AL3_OK

Failure = <AL3 ERROR CODES>

Valid States (MOD_READY) ACTIVE

Side Effects None

Setting Idle Timeslots: al3SetTimeslotIdle

This function uses processor-based Idle Channel Detection. This function sets a timeslot
as idle.

Prototype INT4 al3SetTimeslotIdle(sDEV_HNDL devId, UINT2 linkNum,
UINT2 timeSlot)

Inputs devId: device Handle (from al3Add)

linkNum: specifies the line number to set

timeSlot: specifies the timeslot to set Idle

Outputs None

Returns Success = AL3_OK

Failure = <AL3 ERROR CODES>

Valid States (MOD_READY) ACTIVE

Side Effects None

5.13 OAM Functions

Transmitting OAM Cells: al3TxOAMcell

This function transmits an OAM cell.

Prototype INT4 al3TxOAMcell(sDEV_HNDL devId, void *pOAMCell, BOOLEAN
crcON)

Inputs devId: device Handle (from al3Add)
pOAMCell: (pointer to) the OAM Cell to send
crcOn: flag to indicate if CRC Check should be run

Outputs None

Returns Success = AL3_OK

Failure = <AL3 ERROR CODES>

Valid States (MOD_READY) ACTIVE INACTIVE

 AAL1gator-32/-8/-4 Driver User’s Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 83

Side Effects None

Receiving OAM Cells: al3RxOAMcell

This function receives an OAM cell by placing it in a buffer. Typically called by the ISR
or the DPR.

Prototype INT4 al3RxOAMcell(sDEV_HNDL devId, void *pOAMCell, BOOLEAN
*pCRCPass)

Inputs devId: device Handle (from al3Add)
pOAMCell: (pointer to) space to hold the OAM Cell
pCRCPass: (pointer to) the variable indicating CRC Passed

Outputs the Cell contents via pOAMCell
the state of the CRC check via pCRCPass

Returns Success = AL3_OK

Failure = <AL3 ERROR CODES>

Valid States (MOD_READY) ACTIVE INACTIVE

Side Effects None

5.14 Alarms and Statistics

Enabling DS3 AIS Cells: al3EnableDS3AISCells

This function enables DS3 AIS cells to be sent on a particular high-speed line.

Prototype INT4 al3EnableDS3AISCells(sDEV_HNDL deviceHandle, UINT2 lineNo)

Inputs devId: device Handle (from al3Add)
lineNum: LINE number (0, 16) (Line 16 only for AAL1GATOR-32)

Outputs None

Returns Success = AL3_OK

Failure = <AL3 ERROR CODES>

Valid States (MOD_READY) ACTIVE INACTIVE

Side Effects None

 AAL1gator-32/-8/-4 Driver User’s Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 84

Disabling DS3 AIS Cells: al3DisableDS3AISCells

This function disables DS3 AIS cells being sent on a particular high-speed line.

Prototype INT4 al3DisableDS3AISCells(sDEV_HNDL devId, UINT2 lineNum)

Inputs devId: device Handle (from al3Add)
lineNum: LINE number (0, 16) (Line 16 only for AAL1GATOR-32)

Outputs None

Returns Success = AL3_OK

Failure = <AL3 ERROR CODES>

Valid States (MOD_READY) ACTIVE INACTIVE

Side Effects None

Enabling SBI Alarms: al3EnableSBIAlarm

This function enables alarm generation in a tributary on the SBI bus.

Note: This function is not supported by the AAL1gator-4 or AAL1gator-8.

Prototype INT4 al3EnableSBIAlarm(sDEV_HNDL devId, UINT2 lineNum)

Inputs devId: device Handle (from al3Add)
lineNum: LINE number (0-31)

Outputs None

Returns Success = AL3_OK

Failure = <AL3 ERROR CODES>

Valid States (MOD_READY) ACTIVE INACTIVE

Side Effects None

Disabling SBI Alarms: al3DisableSBIAlarm

This function disables alarm generation in a tributary on the SBI bus.

Note: This function is not supported by the AAL1gator-8 or AAL1gator-4.

Prototype INT4 al3DisableSBIAlarm(sDEV_HNDL devId, UINT2 lineNum)

Inputs devId: device Handle (from al3Add)
lineNum: LINE number (0-31)

Outputs None

Returns Success = AL3_OK

Failure = <AL3 ERROR CODES>

 AAL1gator-32/-8/-4 Driver User’s Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 85

Valid States (MOD_READY) ACTIVE INACTIVE

Side Effects None

Returning Conditional Cell Count: al3GetTCondCellCount

This function returns the Tx Conditioned Cell count for the specified device and queue.

Prototype UINT4 al3GetTCondCellCount (sDEV_HNDL devId, sAL3_QID
queId)

Inputs devId: device Handle (from al3Add)
queId: QUEUE Handle

Outputs None

Returns The current counter value extended to 32 bits

Valid States (MOD_READY) ACTIVE INACTIVE

Side Effects None

Returning Suppressed Cell Count: al3GetTSupprCellCount

This function returns the Tx Suppressed Cell count for the specified device and queue.

Prototype UINT4 al3GetTSupprCellCount (sDEV_HNDL devId, sAL3_QID
queId)

Inputs devId: device Handle (from al3Add)
queId: QUEUE Handle

Outputs None

Returns The current counter value extended to 32 bits

Valid States (MOD_READY) ACTIVE INACTIVE

Side Effects None

Returning Tx Cell Count: al3GetTCellCount

This function returns the Tx Cell count for the specified device and queue.

Prototype UINT4 al3GetTCellCount(sDEV_HNDL devId, sAL3_QID queId)

Inputs devId: device Handle (from al3Add)
queId: QUEUE Handle

Outputs None

Returns The current counter value extended to 32 bits

Valid States (MOD_READY) ACTIVE INACTIVE

 AAL1gator-32/-8/-4 Driver User’s Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 86

Side Effects None

Returning Rx OAM Cell Count: al3GetROAMCellCount

This function returns the Rx OAM Cell count for the specified device.

Prototype UINT4 al3GetROAMCellCount (sDEV_HNDL devId , UINT2
lineNum)

Inputs devId: device Handle (from al3Add)
lineNum: LINE number (0,8,16,24 for AAL1GATOR-32)
 (0 for AAL1GATOR-8/4)

Outputs None

Returns The current counter value extended to 32 bits

Valid States (MOD_READY) ACTIVE INACTIVE

Side Effects None

Returning Tx OAM Cell Count: al3GetTOAMCellCount

This function retrieves the Tx OAM Cell count for the specified device.

Prototype UINT4 al3GetTOAMCellCount (sDEV_HNDL devId, UINT2 lineNum)

Inputs devId: device Handle (from al3Add)
lineNum: LINE number (0,8,16,24 for AAL1GATOR-32)
 (0 for AAL1GATOR-8/4)

Outputs None

Returns The current counter value extended to 32 bits

Valid States (MOD_READY) ACTIVE INACTIVE

Side Effects None

Returning Dropped Rx OAM Cell Count:
al3GetRDroppedOAMCellCount

This function returns the Dropped Rx OAM Cell count for the specified device.

Prototype UINT4 al3GetRDroppedOAMCellCount (sDEV_HNDL devId, UINT2
lineNum)

Inputs devId: device Handle (from al3Add)
lineNum: LINE number (0,8,16,24 for AAL1GATOR-32)
 (0 for AAL1GATOR-8/4)

 AAL1gator-32/-8/-4 Driver User’s Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 87

Outputs None

Returns The current counter value extended to 32 bits

Valid States (MOD_READY) ACTIVE INACTIVE

Side Effects None

Returning SN Error Count: al3GetRIncorrectSn

This function returns the Rx Cells with SN errors for the specified device and queue.

Prototype UINT4 al3GetRIncorrectSn(sDEV_HNDL devId, sAL3_QID queId)

Inputs devId: device Handle (from al3Add)
queId: QUEUE Handle

Outputs None

Returns The current counter value extended to 32 bits

Valid States (MOD_READY) ACTIVE INACTIVE

Side Effects None

Returning Rx Cell Count With Incorrect SNP: al3GetRIncorrectSnp

This function returns the Rx Cell Count with the incorrect SNP, for the specified device
and queue.

Prototype UINT4 al3GetRIncorrectSnp(sDEV_HNDL devId, sAL3_QID queId)

Inputs devId: device Handle (from al3Add)
queId: QUEUE Handle

Outputs None

Returns The current counter value extended to 32 bits

Valid States (MOD_READY) ACTIVE INACTIVE

Side Effects None

Returning Cell Count: al3GetRCellCount

This function returns the Rx Cell count for the specified device and queue.

Prototype UINT4 al3GetRCellCount(sDEV_HNDL devId, sAL3_QID queId)

Inputs devId: device Handle (from al3Add)
queId: QUEUE Handle

Outputs None

Returns The current counter value extended to 32 bits

Valid States (MOD_READY) ACTIVE INACTIVE

Side Effects None

 AAL1gator-32/-8/-4 Driver User’s Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 88

Returning Dropped Rx Cell Count: al3GetRDroppedCellCount

This function returns the Dropped Rx Cells count for the specified device and queue.

Prototype UINT4 al3GetRDroppedCellCount(sDEV_HNDL devId, sAL3_QID
queId)

Inputs devId: device Handle (from al3Add)
queId: QUEUE Handle

Outputs None

Returns The current counter value extended to 32 bits

Valid States (MOD_READY) ACTIVE INACTIVE

Side Effects None

Returning Rx Underrun Count: al3GetRecvUnderrun

This function returns the Receiver Underrun count for the specified device and queue.

Prototype UINT4 al3GetRecvUnderrun(sDEV_HNDL devId, sAL3_QID queId)

Inputs devId: device Handle (from al3Add)
queId: QUEUE Handle

Outputs None

Returns The current counter value extended to 32 bits

Valid States (MOD_READY) ACTIVE INACTIVE

Side Effects None

Returning Rx Overrun Count: al3GetRecvOverrun

This function returns the Receiver Overrun count for the specified device and queue.

Prototype UINT4 al3GetRecvOverrun (sDEV_HNDL devId, sAL3_QID queId)

Inputs devId: device Handle (from al3Add)
queId: QUEUE Handle

Outputs None

Returns The current counter value extended to 32 bits

Valid States (MOD_READY) ACTIVE INACTIVE

Side Effects None

Returning Rx Pointer Reframe Count: al3GetRPtrReframeCount

This function returns the Rx Pointer Reframe count for the specified device and queue.

Prototype UINT4 al3GetRPtrReframeCount(sDEV_HNDL devId, sAL3_QID
queId)

 AAL1gator-32/-8/-4 Driver User’s Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 89

Inputs devId: device Handle (from al3Add)
queId: QUEUE Handle

Outputs None

Returns The current counter value extended to 32 bits

Valid States (MOD_READY) ACTIVE INACTIVE

Side Effects None

Returning Rx Pointer Parity Error Count: al3GetRPtrParErrorCount

This function returns the Rx Pointer Parity Error count for the specified device and
queue.

Prototype UINT4 al3GetRPtrParErrorCount(sDEV_HNDL devId, sAL3_QID
queId)

Inputs devId: device Handle (from al3Add)
queId: QUEUE Handle

Outputs None

Returns The current counter value extended to 32 bits

Valid States (MOD_READY) ACTIVE INACTIVE

Side Effects None

Returning Lost Cell Count: al3GetRLostCellCount

This function returns the Lost Cell count for the specified device and queue.

Prototype UINT4 al3GetRLostCellCount(sDEV_HNDL devId, sAL3_QID
queId)

Inputs devId: device Handle (from al3Add)
queId: QUEUE Handle

Outputs None

Returns The current counter value extended to 32 bits

Valid States (MOD_READY) ACTIVE INACTIVE

Side Effects None

Returning Misinserted Cell Count: al3GetRMisInsertedCellCount

This function returns the Misinserted Cell count for the specified device and queue.

Prototype UINT4 al3GetRMisInsertedCellCount (sDEV_HNDL devId,
sAL3_QID queId)

Inputs devId: device Handle (from al3Add)
queId: QUEUE Handle

 AAL1gator-32/-8/-4 Driver User’s Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 90

Outputs None

Returns The current counter value extended to 32 bits

Valid States (MOD_READY) ACTIVE INACTIVE

Side Effects None

Returning Sticky Bits: al3GetStickyBits

This function returns the Sticky Bit Word for the specified device and queue.

Note: Sticky Bits automatically clear after they have been read.

Prototype UINT4 al3GetStickyBits (sDEV_HNDL devId, sAL3_QID queId,
sAL3_STICKY *pSticky)

Inputs devId: device Handle (from al3Add)
queId: QUEUE Handle
pSticky: (pointer to) space to return the Sticky Bits

Outputs None

Returns The current data value extended to 32 bits

Valid States (MOD_READY) ACTIVE INACTIVE

Side Effects None

5.15 UTOPIA Bus Configuration Functions

Configuring Utopia Bus: al3UtopiaConfig

This function configures the device’s UTOPIA/Any-PHY bus.

Prototype INT4 al3UtopiaConfig(sDEV_HNDL devId, sAL3_DIV_UTOPIA
*pParms)

Inputs devId: device Handle (from al3Add)
pParms: (pointer to) utopia parameters structure

Outputs None

Returns Success = AL3_OK

Failure = <AL3 ERROR CODES>

Valid States (MOD_READY) ACTIVE

Side Effects None

 AAL1gator-32/-8/-4 Driver User’s Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 91

5.16 RAM Interface Configuration Functions

Configuring RAM Interface: al3RamConfig

This function configures the device’s two SRAM interfaces.

Prototype INT4 al3RamConfig(sDEV_HNDL devId, sAL3_DIV_RAM *pParms)

Inputs devId: device Handle (from al3Add)
pParms: points to RAM config params

Outputs None

Returns Success = AL3_OK

Failure = <AL3 ERROR CODES>

Valid States (MOD_READY) ACTIVE

Side Effects None

 AAL1gator-32/-8/-4 Driver User’s Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 92

5.17 SBI Bus Configuration Functions

Configuring SBI Bus: al3SBIConfig

This function configures the device’s SBI bus.

Note: This function is not supported by the AAL1gator-8 or AAL1gator-4.

Prototype INT4 al3SBIConfig(sDEV_HNDL devId, sAL3_DIV_SBI *pParms)

Inputs devId: device Handle (from al3Add)
 pParms: points to SBI bus config params

Outputs None

Returns Success = AL3_OK

Failure = <AL3 ERROR CODES>

Valid States (MOD_READY) ACTIVE

Side Effects None

Configuring SBI Bus Tributarys: al3SBITribConfig

This function configures a tributary on the SBI bus.

Note: The AAL1gator-4 or AAL1gator-8 does not support this function.

Prototype INT4 al3SBITribConfig(sDEV_HNDL devId, UINT2 speNum, UINT2
tribNum, sAL3_DIV_TRIB *pParms)

Inputs devId: device Handle (from al3Add)
speNum: SPE number (1-3)
tribNum: Tributary number (1-28)
pParms: (pointer to) TRIB parameters structure

Outputs None

Returns Success = AL3_OK

Failure = <AL3 ERROR CODES>

Valid States (MOD_READY) ACTIVE

Side Effects None

 AAL1gator-32/-8/-4 Driver User’s Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 93

5.18 Direct Line Configuration Functions

Configuring Direct Lines: al3DirectConfig

This function configures the device’s direct low speed (T1/E1) line interface.

Prototype INT4 al3DirectConfig(sDEV_HNDL devId, UINT2 linkNum,
sAL3_DIV_DIRECT *pParms)

Inputs devId: device Handle (from al3Add)
linkNum: Link Number (0-15 for AAL1GATOR-32)
 (0-7 for AAL1GATOR-8)
 (0-3 for AAL1GATOR-4)
pParms: (pointer to) direct parameters structure

Outputs None

Returns Success = AL3_OK

Failure = <AL3 ERROR CODES>

Valid States (MOD_READY) ACTIVE

Side Effects None

5.19 Interrupt Service Functions

Getting ISR Mask Registers: al3GetMask

This function returns the contents of the interrupt mask registers of the AAL1gator-32
device.

Prototype INT4 al3GetMask(sDEV_HNDL devId, sAL3_MASK *pMASK)

Inputs devId: device Handle (from al3Add)
pMASK: (pointer to) mask structure

Outputs None

Returns Success = AL3_OK

Failure = <AL3 ERROR CODES>

Valid States INACTIVE, ACTIVE

Side Effects None

 AAL1gator-32/-8/-4 Driver User’s Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 94

Setting ISR Mask Registers: al3SetMask

This function sets the contents of the interrupt mask registers of the AAL1gator-32
device.

Prototype INT4 al3SetMask(sDEV_HNDL devId, sAL3_MASK *pMASK)

Inputs devId: device Handle (from al3Add)

pMASK: (pointer to) mask structure

Outputs None

Returns Success = AL3_OK

Failure = <AL3 ERROR CODES>

Valid States (MOD_READY) ACTIVE INACTIVE

Side Effects None

Clearing ISR Mask Registers: al3ClearMask

This function clears individual interrupt bits and registers in the AAL1gator-32 device.
Any bits that are set in the passed structure clear in the associated AAL1gator-32
registers.

Prototype INT4 al3ClearMask(sDEV_HNDL devId, sAL3_MASK *pMASK)

Inputs devId: device Handle (from al3Add)
pMASK: (pointer to) mask structure

Outputs None

Returns Success = AL3_OK

Failure = <AL3 ERROR CODES>

Valid States (MOD_READY) ACTIVE INACTIVE

Side Effects None

Polling ISR Registers: al3Poll

This function commands the Driver to poll the interrupt registers in the Device. The call
will fail unless the device is initialized into polling mode. The output of the poll is the
same as when interrupts are enabled: the data gathered passes to the DPR for disposition.

Prototype INT4 al3Poll (sDEV_HNDL devId, void *pBuf)

Inputs devId: device Handle (from al3Add)

 AAL1gator-32/-8/-4 Driver User’s Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 95

pBuf: (pointer to) a preallocated ISV

Outputs None

Returns SUCCESS -> AL3_OK

FAILURE -> <AAL1GATOR-3 ERROR CODES>

Valid States (MOD_READY) ACTIVE INACTIVE

Side Effects None

ISR Config: al3ISRConfig

This function configures the driver to be in either polled or interrupt mode.

Prototype INT4 al3ISRConfig(sDEV_HNDL devId, AL3_ISR_MODE mode)

Inputs devId: device Handle (from al3Add)
mode: polled or interrupt mode (AL3_ISR_MANUAL,
 AL3_ISR_HDWR)

Outputs None

Returns Success = AL3_OK

Failure = <AL3 ERROR CODES>

Valid States (MOD_READY) PRESENT ACTIVE INACTIVE

Side Effects None

Reading Interrupt Status Registers: al3ISR

This function reads the state of the interrupt registers in the AAL1gator-32 and stores
them into an ISV. Performs functions needed to clear the interrupt, from simply clearing
bits to complex functions. It then sends this ISV via a message queue or other USER
defined method to the DPR task. This routine is called by the application code, from
within al3ISRHandler.

Prototype void *al3ISR (sDEV_HNDL devId, void *pBuf)

Inputs devId: device Handle (from al3Add)
pBuf: (pointer to) a preallocated ISV

Outputs ISR state via 'pBuf'

Returns pBuf

Valid States (MOD_READY) ACTIVE INACTIVE

 AAL1gator-32/-8/-4 Driver User’s Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 96

Side Effects None

Device Processing Routine: al3DPR

This function acts on data contained in an ISV, creates a DPV, invoking application code
callbacks (if defined and enabled) and possibly performing linked actions. The al3DPR
calls from within the application function al3DPRTask.

Prototype sAL3_DPV *al3DPR(void *pBuf)

Inputs pBuf: ISV buffer (from al3ISR())

Outputs None

Returns If pBuf pointed to a user allocated buffer then, a pointer to the
buffer

Else, a NULL pointer

Valid States (MOD_READY) PRESENT ACTIVE INACTIVE

Side Effects None

5.20 Counter Functions

Retrieving Statistical Counts: al3GetCounter

This function retrieves all the statistical counts that are kept in the Device Status Block
(DSB).

Prototype INT4 al3GetCounter (sDEV_HNDL devId, sAL3_CNTR_SPEC
*pSpec, sAL3_DSB *pDSB, BOOLEAN update)

Inputs devId: device Handle (from al3Add)
pSpec: (pointer to) parameter block
pDSB: (pointer to) space to return DSB
update: if set, update from hardware

Outputs current DSB via pDSB

Returns Success = AL3_OK

Failure = <AL3 ERROR CODES>

Valid States (MOD_READY) ACTIVE INACTIVE

Side Effects None

 AAL1gator-32/-8/-4 Driver User’s Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 97

Retrieving Statistical Counts: al3GetStats

This function retrieves all statistical counts kept in the Device Status Block (DSB). It is
the USER’s responsibility to ensure that the pointer points to an area of memory large
enough to hold a copy of the DSB.

Prototype INT4 al3GetStats (sDEV_HNDL devId, sAL3_DSB *pDSB)

Inputs devId: device Handle (from al3Add)
pDSB: (pointer to) device status block

Outputs None

Returns Success = AL3_OK

Failure = <AL3 ERROR CODES>

Valid States (MOD_READY) ACTIVE INACTIVE

Side Effects None

Clearing Statistical Counts: al3ClearStats

This function clears the statistical counts inside the Device Status Block (DSB). Passed
structure non-zero fields correspond to the cleared counters.

Prototype INT4 al3ClearStats (sDEV_HNDL devId, sAL3_DSB* pBuf)

Inputs devId: device Handle (from al3Add)
pBuf: DSB structure used as a key

Outputs None

Returns Success = AL3_OK

Failure = <AL3 ERROR CODES>

Valid States (MOD_READY) ACTIVE INACTIVE

Side Effects None

 AAL1gator-32/-8/-4 Driver User’s Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 98

5.21 Device Diagnostics

Testing A Single Device Register: al3TestReg

This function verifies the hardware access to a device register by writing and reading
back values as well as detecting parity errors.

Prototype INT4 al3TestReg (sDEV_HNDL devId, UINT4 regNum)

Inputs devId: device Handle (from al3Add)
regNum: register number to test

Outputs None

Returns Success = AL3_OK

Failure = <AL3 ERROR CODES>

Valid States (MOD_READY) PRESENT

Side Effects May Set / Clear any register in the Device

Testing Device Registers: al3TestRegs

This function verifies the hardware access to device registers by writing and reading back
values as well as detecting parity errors.

Prototype INT4 al3TestRegs (sDEV_HNDL devId)

Inputs devId: device Handle (from al3Add)

Outputs None

Returns Success = AL3_OK

Failure = <AL3 ERROR CODES>

Valid States (MOD_READY) PRESENT

Side Effects May Set / Clear any register in the Device

Testing Data Bus Wiring: al3TestDataBus

This function tests the data bus wiring between the AAL1gator-32 CPU, and SRAMs by
performing a walking 1’s test on every location in the AAL1gator-32 device’s memory
space.

Prototype INT4 al3TestDataBus(sDEV_HNDL devId, UINT4 firstAddr, UINT4
lastAddr)

 AAL1gator-32/-8/-4 Driver User’s Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 99

Inputs devId: device Handle (from al3Add)
firstAddr: starting Address for test
lastAddr: ending Address for test

Outputs None

Returns Success = AL3_OK

Failure = <AL3 ERROR CODES>

Valid States (MOD_READY) PRESENT

Side Effects Clears RAM and any Device configuration

Testing Address Bus Wiring: al3TestAddrBus

This function tests the address bus wiring between the AAL1gator-32 CPU, and SRAMs
by performing a walking 1’s test on the relevant bits of the address and checking for
aliasing.

Prototype INT4 al3TestAddrBus(sDEV_HNDL devId, UINT4 firstAddr,
UINT4 lastAddr, UINT2 testConst)

Inputs devId: device Handle (from al3Add)
firstAddr: first address
lastAddr: last address
testConst: data value to use for testing

Outputs None

Returns Success = AL3_OK

Failure = <AL3 ERROR CODES>

Valid States (MOD_READY) PRESENT

Side Effects Clears RAM and any Device configuration

5.22 Callback Functions

The AAL1gator-32 driver has the capability to callback functions within the USER code
when certain events occur. These events and their associated callback routine declarations
are detailed below. There is no USER code action that is required by the driver for these
callbacks; the USER is free to implement these callbacks in any manner or else they can
be deleted from the driver.

 AAL1gator-32/-8/-4 Driver User’s Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 100

A1SP Callbacks: cbackA1SP

This callback function is provided by the USER and is used by the DPR to report A1SP
events back to the application. This function should be non-blocking. Typically, the
callback routine sends a message to another task with the event identifier and other
context information. The task that receives this message can then process this information
according to the system requirements. The USER should free the DSB buffer.

Prototype void cbackA1SP(sAL3_DPV *pcurrDPV)

Inputs pcurrDPV: pointer to current DPV received from DPR

Outputs None

Returns None

Valid States ACTIVE

Side Effects None

Utopia Callbacks: cbackUtopia

This callback function is provided by the USER and is used by the DPR to report
UTOPIA events back to the application. This function should be non-blocking. Typically,
the callback routine sends a message to another task with the event identifier and other
context information. The task that receives this message can then process this information
according to the system requirements. The USER should free the DSB buffer.

Prototype INT4 cbackUtopia(sAL3_DPV *pcurrDPV)

Inputs pcurrDPV: pointer to current DPV received from DPR

Outputs None

Returns None

Valid States ACTIVE

Side Effects None

RAM Callbacks: cbackRam

This callback function is provided by the USER and is used by the DPR to report RAM
events back to the application. This function should be non-blocking. Typically, the
callback routine sends a message to another task with the event identifier and other
context information. The task that receives this message can then process this information
according to the system requirements. The USER should free the DSB buffer.

Prototype INT4 cbackRAM(sAL3_DPV *pcurrDPV)

Inputs pcurrDPV: pointer to current DPV received from DPR

 AAL1gator-32/-8/-4 Driver User’s Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 101

Outputs None

Returns None

Valid States ACTIVE

Side Effects None

SBI Callbacks: cbackSBI

This callback function is provided by the USER and is used by the DPR to report SBI bus
events back to the application. This function should be non-blocking. Typically, the
callback routine sends a message to another task with the event identifier and other
context information. The task that receives this message can then process this information
according to the system requirements. The USER should free the DSB buffer.

Prototype void cbackSBI(sAL3_DPV *pcurrDPV)

Inputs pcurrDPV: pointer to current DPV received from DPR

Outputs None

Returns None

Valid States ACTIVE

Side Effects None

 AAL1gator-32/-8/-4 Driver User’s Manual
Hardware Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 102

6 HARDWARE INTERFACE
The AAL1gator-32 driver interfaces directly with the USER’s hardware. In this section, a
listing of each point of interface is shown, along with a declaration and any specific
porting instructions. It is the responsibility of the USER to connect these requirements
into the hardware, either by defining a macro or by writing a function for each item listed.
Take care when matching parameters and return values.

6.1 Device I/O

Safe Reading from Registers: sysAl3SafeReadReg

This function reads the contents of a specific register location. This macro/function
should be UINT2 oriented and should be defined by the user to reflect the target system’s
addressing logic. This function is expected to have error recovery since this function is
used to access the device first.

Prototype #define sysAl3SafeReadReg(baseAddr, offset),UINT2
sysAl3SafeReadReg(UINT2 * baseAddr, UINT4 offset)

Inputs baseAddr: base Address of the Device
offset: offset from 'baseAdd' for this read

Outputs pData: data read placed into this (pointed to) variable

Returns Success = data read
Failure = <no convention yet set>

Reading from Registers: sysAl3ReadReg

This function reads the contents of a specific register location. This macro/function
should be UINT2 oriented and should be defined by the user to reflect the target system’s
addressing logic. There is no need for error recovery in this function.

Prototype #define sysAl3ReadReg(baseAddr, offset), UINT2
sysAl3ReadReg(UINT2 * baseAddr, UINT4 offset)

Inputs baseAddr: base Address of the Device
offset: offset from 'baseAdd' for this read

Outputs None

Returns Always = data read

 AAL1gator-32/-8/-4 Driver User’s Manual
Hardware Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 103

Writing to Registers: sysAl3WriteReg

This function writes the supplied value to the specific register location. This
macro/function should be UINT2 oriented and should be defined by the user to reflect the
target system’s addressing logic. There is no need for error recovery in this function.

Prototype #define sysAl3WriteReg(baseAddr, offset, data), void
sysAl3WriteReg(UINT2 * baseAddr, UINT4 offset, UINT2 data)

Inputs baseAddr: base Address of the Device
offset: offset from 'baseAdd' for this read
data: data to be written

Outputs None

Returns Always = data written

6.2 Interrupt Servicing

This section describes the platform specific routines that are required by the AAL1gator-
32 driver AND provided by the USER. Details are given with each routine.

Installing Handlers: sysAl3ISRHandlerInstall

This function installs the USER-supplied Interrupt Service Routine (ISR),
sysAl3ISRHandler, into the processor’s interrupt vector table.

Prototype INT4 sysAl3ISRHandlerInstall(void)

Inputs None

Outputs None

Returns Success = AL3_OK

Failure = <AL3 ERROR CODES>

Invoking Handlers: sysAl3ISRHandler

This function is invoked when one or more AAL1gator-32 devices raise the interrupt line
to the microprocessor. This routine invokes the driver-provided routine, al3ISR, for each
device registered with the driver.

Prototype void sysAl3ISRHandler (INT4 irq)

Inputs None

Outputs None

Returns Success = AL3_OK

 AAL1gator-32/-8/-4 Driver User’s Manual
Hardware Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 104

Failure = <AL3 ERROR CODES>

Removing Handlers: sysAl3ISRHandlerRemove

This function disables the Interrupt processing for this device. Removes the USER-
supplied Interrupt Service routine (ISR), sysAl3ISRHandler, from the processor’s
interrupt vector table.

Prototype INT4 sysAl3ISRHandlerRemove(void)

Inputs None

Outputs None

Returns Success = AL3_OK

Failure = <AL3 ERROR CODES>

Invoking DPR Routines: sysAl3DPRTask

This routine is spawned as a separate task within the RTOS. It runs periodically and
retrieves interrupt status information saved for it by the al3ISRHandler routine and then
invokes the al3DPR routine for the appropriate device.

Prototype void sysAl3DPRTask (void)

Inputs None

Outputs None

Returns None

Starting the DPR Tasks: sysAl3DPRTaskStart

This routine invokes the DPR task. This routine is called in al3ModuleStart.

Prototype INT4 sysAl3DPRTaskStart (void *dprFuncAddr)

Inputs None

Outputs None

Returns Success = 0x00

Failure = non-zero

Stopping the DPR Tasks: sysAl3DPRTaskStop

This routine deletes the DPR task. This routine is called in al3ModuleStop.

 AAL1gator-32/-8/-4 Driver User’s Manual
Hardware Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 105

Prototype void sysAl3DPRTaskStop (void)

Inputs None

Outputs None

Returns None

Starting Statistics Task: sysAl3StatTask

This routine is spawned as a separate task within the RTOS. It runs periodically and
retrieves hardware statistics and updates software statistics in DSB accordingly. The
period of this task is defined by statUpdatePeriod in the DDB.

Prototype void sysAl3StatTask (void)

Inputs None

Outputs None

Returns None

Starting Statistics Task: sysAl3StatTaskStart

This routine spawns the Stats task. This routine is called in al3ModuleStart.

Prototype INT4 sysAl3StatTaskStart (void *statFuncAddr)

Inputs None

Outputs None

Returns Success = AL3_OK

Failure = <AL3 ERROR CODES>

 AAL1gator-32/-8/-4 Driver User’s Manual
Hardware Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 106

Stopping Statistic Updates: sysAl3StatTaskStop

This routine deletes the Stats task. This routine is called in al3ModuleStop.

Prototype void sysAl3StatTaskStop (void)

Inputs None

Outputs None

Returns Success = AL3_OK

Failure = <AL3 ERROR CODES>

 AAL1gator-32/-8/-4 Driver User’s Manual
RTOS Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 107

7 RTOS INTERFACE
The AAL1gator-32 driver requires the use of some RTOS resources. In this section, a
listing of each required resource is shown, along with a declaration and any specific
porting instructions. It is the responsibility of the USER to connect these requirements
into the RTOS, either by defining a macro or writing a function for each item listed. Care
should be taken when matching parameters and return values.

7.1 Memory Allocation/De-Allocation

Allocating Memory: sysAl3MemAlloc

This function allocates specified number of bytes of memory.

Prototype #define sysAl3MemAlloc(numBytes), UINT1
*sysAl3MemAlloc(UINT4 numBytes)

Inputs numBytes: number of bytes to be allocated

Outputs None

Returns Pointer to first byte of allocated memory

NULL pointer (memory allocation failed)

Freeing Memory: sysAl3MemFree

This function frees memory allocated using sysAl3MemAlloc.

Prototype #define sysAl3MemFree(pFirstByte), void
sysAl3MemFree(UINT1 *pFirstByte)

Inputs pFirstByte: pointer to first byte of the memory region being
 de-allocated

Outputs None

Returns None

 AAL1gator-32/-8/-4 Driver User’s Manual
RTOS Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 108

7.2 Buffer Management

All operating system provides some sort of buffer system, particularly for use in sending
and receiving messages. The following calls, provided by the USER, allow the Driver to
Get and Return buffers from the RTOS. It is the USER’s responsibility to create any
special resources or pools to handle buffers of these sizes during the
sysAl3BufferStart call.

Starting Buffers: sysAl3BufferStart

This function alerts the RTOS that the time has come to make sure ISB buffers and DSB
buffers are available and sized correctly. This may involve the creation of new buffer
pools and it may involve nothing, depending on the RTOS.

Prototype #define sysAl3BufferStart()
INT4 sysAl3BufferStart(void)

Inputs None

Outputs None

Returns AL3_OK
AL3_FAIL

Getting Buffers: sysAl3DPVBufferGet

This function gets a buffer from the RTOS that will be used by the ISR code to create a
Interrupt Service Vector (ISV). The ISV consists of data transferred from the devices
interrupt status registers.

Prototype #define sysAl3DPVBufferGet()
sAL3_ISV * sysAl3ISVBufferGet(void)

Inputs None

Outputs None

Returns Success = (pointer to) a ISV buffer

Failure = NULL (pointer)

 AAL1gator-32/-8/-4 Driver User’s Manual
RTOS Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 109

Getting Buffers: sysAl3ISVBufferGet

This function Gets a buffer from the RTOS that will be used by the ISR code to create a
Interrupt Service Vector (ISV). The ISV consists of data transferred from the devices
interrupt status registers.

Prototype #define sysAl3ISVBufferGet()
sAL3_ISV *sysAl3ISVBufferGet(void)

Inputs None

Outputs None

Returns Success = (pointer to) a ISV buffer

Failure = NULL (pointer)

Sending Buffers: sysAl3BufferSend

This function sends a buffer, through regular message channels, to the DPR task handler
sysAl3DPRTask.

Prototype #define sysAl3BufferSend(pISV)
INT4 sysAl3BufferSend (sAL3_ISV *pISV)

Inputs pISV: (pointer to) buffer to send

Outputs None

Returns Success = 0x00

Failure = (-1)

Receiving Buffers: sysAl3BufferReceive

This function receives a DPV/ISV buffer from the RTOS.

Prototype #define sysAl3BufferReceive ()
sAL3_ISV *sysAl3BufferReceive (void)

Inputs None

Outputs (pointer to) an ISV buffer

Returns None

 AAL1gator-32/-8/-4 Driver User’s Manual
RTOS Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 110

Returning Buffers: sysAl3DPVBufferRtn

This function returns a DPV buffer to the RTOS when the information in the block is no
longer needed by the DPR.

Prototype #define sysAl3DPVBufferRtn(pDPV)
INT4 sysAl3DPVBufferRtn(sAL3_DPV *pdpv)

Inputs pdpv: (pointer to) a DSB buffer

Outputs None

Returns Success = AL3_OK

Failure = AL3_FAIL

Returning Buffers: sysAl3ISVBufferRtn

This function returns a ISV buffer to the RTOS when the information in the block is no
longer needed by the DPR.

Prototype #define sysAl3ISVBufferRtn(pISV)
INT4 sysAl3ISVBufferRtn(sAL3_ISV *pisv)

Inputs pisv: (pointer to) a ISV buffer

Outputs None

Returns Success = AL3_OK

Failure = AL3_FAIL

Stopping Buffers: sysAl3BufferStop

This function alerts the RTOS that the Driver no longer needs any of the ISV buffers or
DPV buffers and that if any special resources were created to handle these buffers, they
can be deleted now.

Prototype #define sysAl3BufferStop(}
void sysAl3BufferStop (void)

Inputs None

Outputs None

Returns None

 AAL1gator-32/-8/-4 Driver User’s Manual
RTOS Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 111

7.3 Timers

Creating Timer Objects: sysAl3TimerCreate

This function creates a timer object for general use.

Prototype #define sysAl3TimerCreate()
void *sysAl3TimerCreate (void)

Inputs None

Outputs None

Returns Success = (pointer to) a timer object

Failure = NULL (pointer)

Starting Timers: sysAl3TimerStart

This function starts a timer.

Prototype #define sysAl3TimerStart(pTimer, period, pFunc)
INT4 sysAl3TimerStart (void *ptimer, UINT4 period, void
*pfunc, INT4 arg)

Inputs ptimer: (pointer to) timer object
period: time (in milliseconds)
pfunc: function to invoke when timer expires

Outputs None

Returns None

Aborting Timers: sysAl3TimerAbort

This function aborts a running timer.

Prototype #define sysAl3TimerAbort(pTimer)
void sysAl3TimerAbort (void *ptimer)

Inputs ptimer: (pointer to) timer object

Outputs None

Returns AL3_OK

Deleting Timers: sysAl3TimerDelete

This function deletes a timer.

 AAL1gator-32/-8/-4 Driver User’s Manual
RTOS Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 112

Prototype #define sysAl3TimerDelete(pTimer)
void sysAl3TimerDelete (void *ptimer)

Inputs ptimer: (pointer to) timer object

Outputs None

Returns None

Suspending a Task: sysAl3TimerSleep

This function suspends execution of a driver task for a specified number of milliseconds.

Prototype #define sysAl3TimerSleep(time)
void sysAl3TimerSleep (UINT4 msec)

Inputs msec: sleep time in milliseconds

Outputs None

Returns None

7.4 Semaphores

Creating Semaphores: sysAl3SemCreate

This function creates an integer semaphore object.

Prototype #define sysAl3SemCreate()
void *sysAl3SemCreate(void)

Inputs None

Outputs None

Returns Success = (pointer to) a semaphore object

Failure = NULL (pointer)

 AAL1gator-32/-8/-4 Driver User’s Manual
RTOS Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 113

Taking Semaphores: sysAl3SemTake

Takes an integer semaphore.

Prototype #define sysAl3SemTake(psem)
void sysAl3SemTake(void *psem)

Inputs psem: (pointer to) a semaphore object

Outputs None

Returns AL3_SUCCESS
AL3_FAILURE

Giving Semaphores: sysAl3SemGive

This function gives an integer semaphore.

Prototype #define sysAl3SemGive(psem)
void sysAl3SemGive(void *psem)

Inputs psem : (pointer to) a semaphore object

Outputs None

Returns AL3_SUCCESS
AL3_FAILURE

Deleting Semaphores: sysAl3SemDelete

This function deletes an integer semaphore object.

Prototype #define sysAl3SemDelete(psem)
void sysAl3SemDelete(void *psem)

Inputs psem : (pointer to) a semaphore object

Outputs None

Returns AL3_SUCCESS
AL3_FAILURE

7.5 Preemption

Disabling Preemption: sysAl3PreemptDisable

This routine prevents the calling task from being pre-empted. If the driver is in interrupt
mode, this routine locks out all interrupts as well as other tasks in the system. If the driver
is in polling mode, this routine locks out other tasks only.

 AAL1gator-32/-8/-4 Driver User’s Manual
RTOS Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 114

Prototype #define sysAl3PreemptDisable ()
INT4 sysAl3PreemptDisable(void)

Inputs None

Outputs None

Returns Pre-emption key (passed back as an argument in
sysAl3PreemptEn)

Disabling Preemption: sysAl3PreemptEnable

This routine allows the calling task to be pre-empted. If the driver is in interrupt mode,
this routine unlocks all interrupts and other tasks in the system. If the driver is in polling
mode, this routine unlocks other tasks only.

Prototype #define sysAl3PreemptEnable (key)
void sysAl3PreemptEnable(INT4 key)

Inputs key - pre-emption key (returned by sysAl3PreemptEn)

Outputs None

Returns None

 AAL1gator-32/-8/-4 Driver User’s Manual
Porting Drivers

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 115

8 PORTING DRIVERS
This section outlines how to port the AAL1gator-32 device driver to your hardware and
RTOS platform. However, this manual can offer only guidelines for porting the
AAL1gator-32 driver because each platform and application is unique.

8.1 Driver Source Files

The C source files listed below contain the code for the AAL1gator-32 driver. You may
need to modify the code or develop additional code. The code is in the form of constants,
macros, and functions. For ease of porting, the code is grouped into source files (src)
and include files (inc). The src files contain the functions and the inc files contain the
constants and macros.

Figure 9: Driver Source Files

al3_drv src

inc

Makefile

al3_hw.h (contains hardware-interface macro and constant definitions)
al3_api.h (contains data-structure definitions and prototypes)

al3_rtos.h (contains RTOS-interface macro and constant definitions)
al3_stat.h (contains counter configuration structures and prototypes)

al3_dev.h (contains device register definitions)

al3_mdb (contains the layout of the MDB)

al3_typs.h (contains general definitions for compiling)

al3_chan.h (contains channel configuration structures and prototypes)

al3_diag.h (contains diagnostic configuration structures and prototypes)

al3_dpr.h (contains DPR configuration structures and prototypes
al3_init.h (contains initialization configuration structures and prototypes)

al3_isr.h (contains ISR configuration structures and prototypes)

al3_app.h (contains example code)
al3_app.c (contains example code)example

al3_hw.c (hardware interface functions)

al3_api.c (contains top level API functions)

al3_rtos.c (RTOS interface functions)

al3_dpr.c (DPR API & internal functions)

al3_api2.c (contains internal (api-related) functions)

al3_diag.c (diagnostic API & internal functions)

al3_init.c (initialization API & internal functions)
al3_isr.c (ISR API & internal functions)

al3_stat.c (alarms, counters and status API & internal functions)

al3_chan.c (channel configuration API & internal functions)

8.2 Driver Porting Procedures

The following procedures summarize how to port the AAL1gator-32 driver to your
platform. The subsequent sections describe these procedures in more detail.

 AAL1gator-32/-8/-4 Driver User’s Manual
Porting Drivers

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 116

To port the AAL1gator-32 driver to your platform:

Procedure 1: Port the driver’s RTOS extensions (page 116):

Procedure 2: Port the driver to your hardware platform (page 118):

Procedure 3: Port the driver’s application-specific elements (page 119):

Procedure 4: Build the driver (page 120).

Procedure 1: Porting Driver RTOS Extensions

The RTOS extensions encapsulate all RTOS specific services and data types used by the
driver. The al3_typs.h file contains data types and compiler-specific data-type
definitions. The al3_rtos.h & al3_rtos.c files contain macros and functions for
RTOS specific services used by the Driver. These RTOS services include:

�� Memory Management

�� Buffer Management

�� Timers

�� Task Management

�� Semaphores

To port the driver’s OS extensions:

1. Modify the data types in al3_typs.h. The number after the type identifies the
data-type size. For example, UINT4 defines a 4-byte (32-bit) unsigned integer.
Substitute the compiler types that yield the desired types as defined in this file.

2. Modify the RTOS specific macros in al3_rtos.h and/or the RTOS specific
functions in al3_rtos.c. The flag ‘USE_RTOS_MACROS’ (in al3_rtos.h) enables
the macros in al3_rtos.h and disables the functions in al3_rtos.c. By default
this flag is set. Clear this flag if you prefer to use the functions instead of macros. The
following table outlines the macros/functions that need to be defined/coded:

Service Type Macro Name Description

sysAl3MemAlloc Allocates a memory block
sysAl3MemFree Frees a memory block
sysAl3MemCopy Sets a memory block to one value
sysAl3MemCopy Copies a memory block

Memory

sysAl3BufferStart Allows the Application to pre-setup
buffer pools for both ISV and DPV
buffers

 AAL1gator-32/-8/-4 Driver User’s Manual
Porting Drivers

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 117

Service Type Macro Name Description

sysAl3DPVBufferGet Returns a DPV Buffer to the driver
from the Application's buffer pool

sysAl3ISVBufferGet Returns a ISV Buffer to the driver from
the Application's buffer pool

sysAl3BufferSend Allows the Application to choose the
method for sending each initialized ISV
from the ISR code to the DPR Task

sysAl3BufferReceive Allows the Application to choose the
method for receiving each initialized
ISV from the ISR code to the DPR Task

sysAl3DPVBufferRtn Returns a DPV to the Application's
DPV pool

sysAl3ISVBufferRtn Returns a ISV to the Application's ISV
pool

sysAl3BufferStop Allows the Application to clean-up
and/or deallocate both the DPV and ISV
buffer pools

sysAl3TimerCreate Creates a new Timer for use by the
driver

sysAl3TimerStart Starts a timer
sysAl3TimerAbort Aborts a timer
sysAl3TimerDelete Deletes a timer

Timer

sysAl3TimerSleep Causes a timer to trigger after a
specified period of time

 AAL1gator-32/-8/-4 Driver User’s Manual
Porting Drivers

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 118

Service Type Macro Name Description

sysAl3DPRTaskStart Allows the Application to install/start
the DPR task

sysAl3DPRTask Allows the Application to control the
DPR Task

sysAl3DPRTaskStop Allows the Application to de-
install/stop the DPR Task

sysAl3StatTaskStart Allows the Application to install/start
the STAT task

sysAl3StatTask Allows the Application to control the
STAT Task

DPR / Statistics
Management

sysAl3StatTaskStop Allows the Application to deinstall/stop
the STAT Task

sysAl3SemCreate Create an integer semaphore
sysAl3SemTake Sets an integer semaphore
sysAl3SemGive Clears an integer semaphore

Semaphore

sysAl3SemDelete Deletes an integer semaphore

Procedure 2: Porting Drivers to Hardware Platforms

This section describes how to modify the AAL1gator-32 driver for your hardware
platform.

To port the driver to your hardware platform:

1. Define the Hardware system-configuration constants in the al3_hw.h file. Modify
the following constants to reflect your system’s hardware configuration:

Device Constant Description Default

AL3_SHIFT Adjusts the al3ReadXXX and
al3WriteXXX macros for
address bus width

1

2. Modify the Hardware specific macros in al3_hw.h and/or the Hardware specific
functions in al3_hw.c. The flag ‘USE_HW_MACROS’ (in al3_hw.h) enables the
macros in al3_hw.h and disables the functions in al3_hw.c. By default this flag is
set. Clear this flag if you prefer to use the functions instead of the macros. The
following table outlines the macros/functions that need to be defined/coded:

 AAL1gator-32/-8/-4 Driver User’s Manual
Porting Drivers

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 119

Service Type Macro Name Description

sysAl3SafeReadReg Create an integer semaphore
sysAl3ReadReg Sets an integer semaphore

Read/Write

sysAl3WriteReg Clears an integer semaphore
sysAl3ISRHandlerInstall Installs the ISR Handler
sysAl3ISRHandler Services each ISR

ISR

sysAl3ISRHandlerRemove Removes the ISR Handler

Procedure 3: Porting Driver Application-Specific Elements

Application specific elements are configuration constants and callback functions used by
the API for developing an application. This section describes how to modify the
application specific elements in the AAL1gator-32 driver.

To port the driver’s application-specific elements:

1. Define the following driver task-related callback functions. Each function can be
defined for the Driver by passing its address via an initialization profile. The use
of each callback is optional. Passing a NULL in place of the function’s address
disables the Driver’s use of that function. The following table lists the callbacks
that may be used by the application:

CallBack Function Description

sysAl3CbackRAM Handles events that relate to the RAM section of
the Device

sysAl3CbackSBI Handles events that relate to the SBI section of the
Device

sysAl3CbackA1SP Handles events that relate to the A1SP section of
the Device

sysAl3CbackUtopia Handles events that relate to the Utopia Bus section
of the Device

 AAL1gator-32/-8/-4 Driver User’s Manual
Porting Drivers

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 120

Procedure 4: Building Drivers

This section describes how to build the AAL1gator-32 driver.

To build the driver:

2. Ensure that the directory variable names in the makefile reflect your actual driver and
directory names.

3. Compile the source files and build the AAL1gator-32 API driver library using your
make utility.

4. Link the AAL1gator-32 API driver library to your application code.

 AAL1gator-32/-8/-4 Driver User’s Manual
Appendix A: Coding Conventions

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 121

APPENDIX A: CODING CONVENTIONS
This section describes the coding conventions used in the implementation of all PMC
driver software.

Variable Type Definitions

Table 37: Variable Type Definitions

Type Description

UINT1 unsigned integer – 1 byte

UINT2 unsigned integer – 2 bytes

UINT4 unsigned integer – 4 bytes

INT1 signed integer – 1 byte

INT2 signed integer – 2 bytes

INT4 signed integer – 4 bytes

BOOLEAN unsigned integer – 2 bytes

VOID void

 AAL1gator-32/-8/-4 Driver User’s Manual
Appendix A: Coding Conventions

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 122

Naming Conventions

Table 38 presents a summary of the naming conventions followed by all PMC driver
software. A detailed description follows the sub-sections.

The names used in the drivers are verbose enough to make their purpose fairly clear. This
makes the code more readable. Generally, the device’s name or abbreviation appears in
prefix.

Table 38: Naming Conventions

Type Case Naming
convention

Examples

Macros Uppercase prefix with “m” and
device abbreviation

mAL3_WRITE

Constants Uppercase prefix with device
abbreviation

AL3_REG

Structures Hungarian Notation prefix with “s” and
device abbreviation

sAL3_DDB

API Functions Hungarian Notation prefix with device
name

al3Add

Porting Functions Hungarian Notation prefix with “sys”
and device name

sysAl3RawRead()

Static Functions Hungarian Notation MyStaticFunction()

Variables Hungarian Notation maxDevs

Pointers to variables Hungarian Notation prefix variable
name with “p”

pmaxDevs

Global variables Hungarian Notation prefix with device
name

al3Mdb

 AAL1gator-32/-8/-4 Driver User’s Manual
Appendix A: Coding Conventions

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 123

Macros

The following list identifies the macros conventions used in the driver code:

�� Macro names must be all uppercase.

�� Words shall be separated by an underscore.

�� The letter “m” in lowercase is used as a prefix to specify that it is a macro, then the
device abbreviation must appear.

�� Example: mAL3_WRITE is a valid name for a macro.

Constants

The following list identifies the constants conventions used in the driver code:

�� Constant names must be all uppercase.

�� Words shall be separated by an underscore.

�� The device abbreviation must appear as a prefix.

�� Example: AL3_REG is a valid name for a constant.

Structures

The following list identifies the macros conventions used in the driver code:

�� Structure names must be all uppercase.

�� Words shall be separated by an underscore.

�� The letter “s” in lowercase must be used as a prefix to specify that it is a structure,
then the device abbreviation must appear.

�� Example: sAL3_DDB is a valid name for a structure.

 AAL1gator-32/-8/-4 Driver User’s Manual
Appendix A: Coding Conventions

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 124

Functions

API Functions

�� Naming of the API functions must follow the hungarian notation.

�� The device’s full name in all lowercase shall be used as a prefix.

�� Example: al3Add() is a valid name for an API function.

Porting Functions

�� Porting functions correspond to all function that are hardware and/or RTOS
dependant.

�� Naming of the porting functions must follow the hungarian notation.

�� The “sys” prefix shall be used to indicate a porting function.

�� The device’s name starting with an uppercase must follow the prefix.

�� Example: sysAl3RawRead() is a hardware/RTOS specific.

�� Static Functions

�� Static Functions are internal functions and have no special naming convention.
However, they must follow the hungarian notation.

�� Example: myDummyFunction() is a valid name for an internal function.

Variables

�� Naming of variables must follow the hungarian notation.

�� A pointer to a variable shall use “p” as a prefix followed by the variable name
unchanged. If the variable name already starts with a “p”, the first letter of the
variable name may be capitalized, but this is not a requirement. Double pointers
might be prefixed with “pp”, but this is not required.

�� Global variables must be identified with the device’s name in all lowercase as a
prefix.

�� Examples: maxDevs is a valid name for a variable, pmaxDevs is a valid name for a
pointer to maxDevs, and al3BaseAddress is a valid name for a global variable.

�� Note: Both pprevBuf and pPrevBuf are accepted names for a pointer to the
prevBuf variable, and that both pmatrix and ppmatrix are accepted names for a
double pointer to the variable matrix.

 AAL1gator-32/-8/-4 Driver User’s Manual
Appendix A: Coding Conventions

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 125

File Organization

Table 39 presents a summary of the file naming conventions. All file names must start
with the device abbreviation, followed by an underscore and the actual file name. File
names should convey their purpose with a minimum amount of characters. If a file size is
getting too big one might separate it into two or more files, providing that a number is
added at the end of the file name (e.g. al3_api.c or al3_api2.c).

There are 5 different types of files:

�� The Generic API files containing all the generic API functions (al3ModuleOpen,
al3Add, al3Activate, etc..)

�� Device Specific API files containing device specific API functions (Initialization,
Stats, etc…)

�� The hardware file containing the hardware dependent functions

�� The RTOS file containing the RTOS dependent functions

�� The other files containing all the remaining functions of the driver

Table 39: File Naming Conventions

File Type File Name

Generic API al3_api.c, al3_api.h

Device Specific API al3_dpr.c, al3_isr.c, al3_diag.c, al3_init.c,
al3_chan.c, al3_stat.c, al3_dpr,h, al3_isr.h,
al3_diag.h, al3_init.h, al3_chan.h, al3_stat.h

Hardware Dependent al3_hw.c, al3_hw.h

RTOS Dependent al3_rtos.c, al3_rtos.h

Other al3_dev.h, al3_mdb.h

 AAL1gator-32/-8/-4 Driver User’s Manual
Appendix A: Coding Conventions

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 126

Generic API Files

�� The name of the Generic API files must start with the device abbreviation followed
by an underscore and “api”. Eventually a number might be added at the end of the
name.

�� Examples: al3_api.c is the only valid name for the file that contains the generic
API functions. al3_api.h is the only valid name for the file that contains all of the
generic API functions headers.

Device Specific API Files

�� The name of the Device Specific API files must start with the device abbreviation
followed by an underscore and a descriptive ending that relates to the functionality
within.

�� Examples: al3_chan.c is the name for the file that contains API and internal
functions for configuring Channels in the device. al3chan.h is the name of the file
that contains the constants and declarations for the channel configuration functions.

Hardware Dependent Files

�� The name of the hardware dependent files must start with the device abbreviation
followed by an underscore and “hw”. Eventually a number might be added at the end
of the file name.

�� Examples: al3_hw.c is the only valid name for the file that contains all of the
hardware dependent functions. al3_hw.h is the only valid name for the file that
contains all of the hardware dependent functions headers.

RTOS Dependent Files

�� The name of the RTOS dependent files must start with the device abbreviation
followed by an underscore and “rtos”. Eventually a number might be added at the end
of the file name.

�� Examples: al3_rtos.c is the only valid name for the file that contains all of the
RTOS dependent functions, al3_rtos.h is the only valid name for the file that
contains all of the RTOS dependent functions headers.

 AAL1gator-32/-8/-4 Driver User’s Manual
Appendix A: Coding Conventions

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 127

Other Driver Files

�� The name of the remaining driver files must start with the device abbreviation
followed by an underscore and the file name itself, which should convey the purpose
of the functions within that file with a minimum amount of characters.

�� Examples: al3_dev.h is a valid name for a file that would deal with register map
within the Device and al3_mdb.h is a valid name for a file that lays out the structure
of the MDB.

 AAL1gator-32/-8/-4 Driver User’s Manual
Appendix B: Error Codes

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 128

APPENDIX B: ERROR CODES
The following describes the error codes used in the AAL1gator-32 device driver:

Error Code Description

AL3_OK Success
AL3_FAIL Failure
AL3_ERR_HW
AL3_ERR_SEM
AL3_ERR_FREE
AL3_ERR_READ
AL3_ERR_RTOS
AL3_ERR_ALLOC Memory allocation failure
AL3_ERR_TIMER Timer management error
AL3_ERR_WRITE
AL3_ERR_BUFFER Buffer management error
AL3_ERR_OPEN Internal call to ModuleOpen failed
AL3_ERR_STOP Internal call to ModuleStop failed
AL3_ERR_CLOSE Internal call to ModuleClose failed
AL3_ERR_START Internal call to ModuleStart failed
AL3_ERR_ISOPEN Module is already open
AL3_ERR_STOPED Module is currently closed
AL3_ERR_CLOSED Module is currently stoped
AL3_ERR_ADD Internal call to Add failed
AL3_ERR_INIT Internal call to Init failed
AL3_ERR_RESET Internal call to Reset failed
AL3_ERR_DELETE Internal call to Delete failed
AL3_ERR_UPDATE Internal call to Update failed
AL3_ERR_ACTIVATE Internal call to Activate failed
AL3_ERR_DEACTIVATE Internal call to DeActivate failed
AL3_ERR_ISIDLE Module is already in the IDLE state
AL3_ERR_ISREADY Module is already in the READY state
AL3_ERR_ISSTART Module is already in the START state
AL3_ERR_ISACTIVE Device is already in the ACTIVE state

 AAL1gator-32/-8/-4 Driver User’s Manual
Appendix B: Error Codes

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 129

Error Code Description

AL3_ERR_ISPRESENT Device is already in the PRESENT state
AL3_ERR_ISINACTIVE Device is already in the INACTIVE state
AL3_ERR_NOTIDLE Module not in the IDLE state
AL3_ERR_NOTREADY Module not in the READY state
AL3_ERR_NOTSTART Module not in the START state
AL3_ERR_NOTACTIVE Device not in the ACTIVE state
AL3_ERR_NOTPRESENT Device not in the PRESENT state
AL3_ERR_NOTINACTIVE Device not in the INACTIVE state
AL3_ERR_ARG Invalid argument
AL3_ERR_CFG Invalid configuration
AL3_ERR_MDB Module is invalid
AL3_ERR_ADDR Invalid address
AL3_ERR_HNDL Invalid device handle
AL3_ERR_MODE Invalid mode
AL3_ERR_RANGE Incorrect range
AL3_ERR_HWFAIL Hardware failure
AL3_ERR_RAMFAIL RAM failure
AL3_ERR_TIMEOUT Timed out while polling
AL3_ERR_INUSE Already in use
AL3_ERR_MAXPROF Maximum profile already added
AL3_ERR_MAXDEVICE Maximum device already reached
AL3_ERR_ARRAY_FULL Array is full
AL3_ERR_CHAN_INUSE Chain already in use
AL3_ERR_DEV_EXISTS Device already exists
AL3_ERR_QUEUE_INUSE Queue already in use

 AAL1gator-32/-8/-4 Driver User’s Manual
Appendix C: AAL1gator-32 Events

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 130

APPENDIX C: AAL1GATOR-32 EVENTS
This appendix describes the events used in the AAL1gator-32 device driver:

SBI Alarm Events

Event Code Description

AL3_SBI_ALARMH_EVENT SBI alarm state has changed for a high
link

AL3_SBI_ALARML_EVENT SBI alarm state has changed for a low
link

SBI Extract Events

Event Code Description

AL3_EXT_INS_DC_EVENT Depth Check error has been detected

AL3_EXT_C1FP_EVENT C1FP realignment has been detected

AL3_EXT_SYNC_EVENT SBIIP_SYNC realignment has been
detected

AL3_EXT_FIFO_UDR_EVENT FIFO underrun has been detected

AL3_EXT_FIFO_OVR_EVENT FIFO overrun has been detected

AL3_EXT_SBI_PERR_EVENT SBI parity error has been detected

SBI Insert Events

Event Code Description

AL3_INS_INS_DC_EVENT Depth Check error has been detected

AL3_INS_C1FP_EVENT C1FP realignment has been detected

AL3_INS_SYNC_EVENT SBIIP_SYNC realignment has been
detected

AL3_INS_FIFO_UDR_EVENT FIFO underrun has been detected

AL3_INS_FIFO_OVR_EVENT FIFO overrun has been detected

 AAL1gator-32/-8/-4 Driver User’s Manual
Appendix C: AAL1gator-32 Events

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 131

UTOPIA Events

Event Code Description

AL3_UTOPIA_RX_RUNT_EVENT A short cell (less than 53 bytes) has been
received

AL3_UTOPIA_LFIFO_FULL_EVENT UTOPIA Loopback FIFO is full

AL3_UTOPIA_TXFR_ERR_EVENT Transmit UTOPIA interface has been
requested to send a cell when it did not
have one available

AL3_UTOPIA_TFIFO_FULL_EVENT Transmit UTOPIA FIFO is full

AL3_UTOPIA_PAR_ERR_EVENT Parity error encoutered in the UTOPIA
interface

RAM Parity Events

Event Code Description

AL3_RAM1_PAR_ERR_EVENT Parity error encoutered in the RAM1
interface

AL3_RAM2_PAR_ERR_EVENT Parity error encoutered in the RAM2
interface

A1SP Events

Event Code Description

AL3_A1SP_TFIFO_FULL_EVENT TALP FIFO is full

AL3_A1SP_RFIFO_FULL_EVENT Receive Status FIFO is full

AL3_A1SP_RFIFO_EMPB_EVENT Receive Status FIFO is empty

AL3_A1SP_IFIFO_FULL_EVENT Transmit Idle State FIFO is full

AL3_A1SP_IFIFO_EMPB_EVENT Transmit Idle State FIFO is empty

AL3_A1SP_OAM_EVENT A1SP block has received a new OAM
cell

AL3_A1SP_FFIFO_FULL_EVENT Frame advance FIFO is full

AL3_RFIFO_R_LINE_RESYNC_EVENT Receive line has entereed a resync state

 AAL1gator-32/-8/-4 Driver User’s Manual
Appendix C: AAL1gator-32 Events

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 132

Event Code Description

AL3_RFIFO_T_LINE_RESYNC_EVENT Transmit line has entereed a resync state

AL3_RFIFO_BITMASK_CHANGE_EVENT Bitmask for active channels has changed

AL3_RFIFO_EXIT_UNDERRUN_EVENT Queue just exited the underrun state

AL3_RFIFO_ENTER_UNDERRUN_EVENT Queue just entered the underrun state

AL3_RFIFO_RECEIVE_QUEUE_ERR_EVENT Error or status condition occurred on the
receive queue (check sticky bit)

AAL1gator-32/-8/-4 Driver User’s Manual
Acronyms

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 133

ACRONYMS
AAL: ATM Adaptation Layer

AAL1: ATM Adaptation Layer 1

API: Application Programming Interface

BERT: Bit error-rate test

BOOL: Boolean data type

CBR: Constant Bit Rate

CES: Circuit Emulation Service

DDB: Device Data Block

DIV: Device Initialization Vector

DPR: Deferred Processing Routine

DSB: DEVICE Status Block

FCS: Frame check sequence

FIFO: First in, first out

GDD: Global driver database

GPIC: PCI controller

HCS: Header check sequence

HDLC: High-level data link control

ISR: Interrupt Service Routine

MDB: Module Data Block

MIV: Module Initialization Vector

MSB: Module Status Block

MVIP: Multi-vendor integration protocol

PCI: Processor connection interface

PHY: Physical layer

RAPI: Receive Any-PHY packet interface

AAL1gator-32/-8/-4 Driver User’s Manual
Acronyms

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 134

RCAS: Receive channel assignor

RHDL: Receive HDLC processor

RMAC: Receive memory access controller

RTOS: Real-Time operating system

SAR: Segmentation and Reassembly

SBI Interface: Scaleable bandwidth interconnect interface

SCD Interface: Serial clock and data interface

TAPI: Transmit Any-PHY packet interface

TCAS: Transmit channel assignor

THDL: Transmit HDLC processor

TMAC: Transmit memory access controller

AAL1gator-32/-8/-4 Driver User’s Manual
List of Terms

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 135

LIST OF TERMS
APPLICATION: Refers to protocol software used in a real system as well as validation
software written to validate the AAL1gator-32 driver on a validation platform.

API (Application Programming Interface): Describes the connection between this
MODULE and the USER’s Application code.

INGRESS: An older term for the line side of the device. The line side usually contains
the larger aggregate connections and usually connects to the WAN portion of a network.

EGRESS: An older term for the system side of the device. The system side usually
contains the smaller individual connections and usually connects to the LAN portion of a
network

ISR (Interrupt Service Routine): A common function for intercepting and servicing
DEVICE events. This function is kept as short as possible because an Interrupt preempts
every other function starting the moment it occurs and gives the service function the
highest priority while running. Data is collected, Interrupt indicators are cleared and the
function ended.

DPR (Deferred Processing Routine): This function is installed as a task, at a USER
configurable priority, that serves as the next logical step in Interrupt processing. Data that
was collected by the ISR is analyzed and then calls are made into the Application that
inform it of the events that caused the ISR in the first place. Because this function is
operating at the task level, the USER can decide on its importance in the system, relative
to other functions.

DEVICE : ONE AAL1gator-32 Integrated Circuit. There can be many Devices, all served
by this ONE Driver MODULE

�� DIV (DEVICE Initialization Vector): Structure passed from the API to the DEVICE
during initialization; it contains parameters that identify the specific modes and
arrangements of the physical DEVICE being initialized.

�� DDB (DEVICE Data Block): Structure that holds the Configuration Data for each
DEVICE.

�� DSB (DEVICE Status Block): Structure that holds the Alarms, Status, and Statistics
for each DEVICE.

MODULE: All of the code that is part of this driver, there is only ONE instance of this
MODULE connected to ONE OR MORE AAL1gator-32 chips.

�� MIV (MODULE Initialization Vector): Structure passed from the API to the
MODULE during initialization, it contains parameters that identify the specific
characteristics of the Driver MODULE being initialized.

�� MDB (MODULE Data Block): Structure that holds the Configuration Data for this
MODULE.

�� MSB (MODULE Status Block): Structure that holds the Alarms, Status and Statistics
for the MODULE

AAL1gator-32/-8/-4 Driver User’s Manual
List of Terms

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 136

�� RTOS (Real Time Operating System): The host for this Driver

AAL1gator-32/-8/-4 Driver User’s Manual
Index

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 137

INDEX

A
AAL1 Channel Configuration, 19, 32, 39,

70
Aborting Timers

sysAl3TimerAbort, 111

Activating Channels

al3ActivateChannel, 71, 80, 81, 85,
86, 87, 88, 89

Activating Channels with Enhanced
Parameters

al3EnhancedActivateChannel, 72

Activating Devices

al3Activate, 27, 45, 64, 66

Activating Structured Channels

al3EnhancedActivateChannelStr, 33,
75

Activating Structured Channels

al3ActivateChannelStr, 33

Activating Unstructured Channels

al3ActivateChannelUnstr, 33, 73

al3EnhancedActivateChannelUnstr,
33, 74

activePageEXSBI, 57
activePageINSBI, 57
adapFiltSize, 47
Adding Devices

al3Add, 26, 64, 65, 66, 67, 68, 69, 70,
71, 72, 73, 74, 75, 76, 77, 78, 79,
80, 81, 82, 83, 84, 85, 86, 87, 88,
89, 90, 91, 92, 93, 94, 95, 96, 97,
98, 99, 124

Alarms and Statistics, 19, 36, 83
alarmSBI, 54
Allocating Memory

sysAl3MemAlloc, 107, 116

allocTbl, 54
allocTblBlank, 53
API, 135

Application Programming Interface, 18,
19, 61, 133

appMDB, 56
Associating Channels

al3AssociateChannel, 33, 76

autoActivate, 45, 64
autoInit, 57
autoStart, 45, 56

B
baseAddr, 57, 65
Buffers, 59, 108, 109, 110
bufOK, 56
Building Drivers, 120

C
Callback Functions, 99
Callbacks

cbackA1SP, 57, 100

cbackRAM, 57, 100

cbackSBI, 57, 101

cbackUtopia, 57, 100

Calling

a13DPR, 24, 29, 30, 31, 32

a13ISR, 23, 29, 30, 31, 32

cellRcvd, 52
cellRx, 54
Channel Conditioning, 40, 51, 77
Channel Provisioning, 17
checkParity, 50
Clearing

ISR Mask Registers

al3ClearMask, 94

Statistical Counts

al3ClearStats, 97

clkKill, 44, 49
clkMaster, 43, 48
Closing Modules

AAL1gator-32/-8/-4 Driver User’s Manual
Index

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 138

al3ModuleClose, 26, 61

CLP, 39, 50
Coding

Conventions, 121

condMode, 40, 51
configuration

CFG_CHAN_ENH, 50

cfgRam, 46

cfgSbi, 46

cfgUtopia, 46

Configuring

Direct Lines

al3DirectConfig, 36, 93

Ram Interface

al3RamConfig, 91

al3RAMConfig, 35

SBI Bus

al3SBIConfig, 35, 92

SBI Bus Tributarys

al3SBITribConfig, 35, 92

Underrun Data

al3SetUnderrun, 71

Utopia Bus

al3UtopiaConfig, 90

Constants, 36
counter, 58
crcOn, 82
Creating Semaphores

sysAl3SemCreate, 112

Creating Timer Objects

sysAl3TimerCreate, 111

D
Data Structures, 39
dbces, 54
dbcesBitMaskErr, 52
DDB, 135
ddbAddr, 56
Deactivating Channels

al3DeactivateChannel, 33, 72

Deactivating Devices

al3DeActivate, 27, 66

Deactivating Structured Channels

al3DeactivateChannelStr, 76

Deactivating Unstructured Channels

al3DeActivateChannelUnstr, 74

Deferred Processing Routine Module,
24

Deferred Processing Vector, 60
Deleting

Devices

al3Delete, 26, 27, 61, 65

Semaphores

sysAl3SemDelete, 113

Timers

sysAl3TimerDelete, 112

Device

Activation and De-Activation, 66

Addition and Deletion, 17, 65

Data Block, 23, 26, 37, 56, 57, 64

Data-Block Module, 23

devCntr, 58

devDSB, 58

devId, 59

devNum, 57

devState, 57

AAL1gator-32/-8/-4 Driver User’s Manual
Index

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 139

devValid, 57

Diagnostics, 17, 98

I/O, 102

Initialization, 17, 64, 65

Management, 28

Processing Routine

al3DPR, 96, 104

Reading and Writing, 67

States, 26

Status Block, 23, 58, 97

Device Configuration, 32
diagOnInit, 45, 56, 64
Direct Line

Configuration, 20, 50, 93

Configuration Functions, 93

Interface Configuration, 35, 44

Interface Configuration Table, 44

Disabling

DS3 AIS Cells

al3DisableDS3AISCells, 36, 84

Loopbacks

al3DisableLpbk, 80, 81

Receive Conditioning

al3DisableRxCond, 33, 79

SBI Alarms

al3DisableSBIAlarm, 36, 84

SRTS

al3DisableSRTS, 79

Transmit Conditioning

al3DisableTxCond, 78

Disassociating Channels With An
Existing Mapping

al3DisAssociateChannel, 33, 77

divAddr, 56
divNum, 57
DPR, 135
Driver

API, 19

Functions and Features, 17

Hardware Interface, 21

Interfaces, 18

Library Module, 23

Porting Procedures, 115

Porting Quick Start, 16

Source Files, 115

E
egress, 135
Enabling DS3 AIS Cells

al3EnableDS3AISCells, 36, 83

Enabling Loopbacks

al3EnableLpbk, 80, 81

Enabling Receive Conditioning

al3EnableRxCond, 33, 78

Enabling SBI Alarms

al3EnableSBIAlarm, 36, 84

Enabling Transmit Conditioning

al3EnableTxCond, 33, 77

errDevice, 37, 57, 65
errModule, 37, 55
error codes

AL3_ERR_ACTIVATE, 128

AL3_ERR_ADD, 128

AL3_ERR_ADDR, 129

AAL1gator-32/-8/-4 Driver User’s Manual
Index

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 140

AL3_ERR_ALLOC, 128

AL3_ERR_ARG, 129

AL3_ERR_ARRAY_FULL, 129

AL3_ERR_BUFFER, 128

AL3_ERR_CFG, 129

AL3_ERR_CHAN_INUSE, 129

AL3_ERR_CLOSE, 128

AL3_ERR_CLOSED, 128

AL3_ERR_DEACTIVATE, 128

AL3_ERR_DELETE, 128

AL3_ERR_DEV_EXISTS, 129

AL3_ERR_FREE, 128

AL3_ERR_HNDL, 129

AL3_ERR_HW, 128

AL3_ERR_HWFAIL, 129

AL3_ERR_INIT, 128

AL3_ERR_INUSE, 129

AL3_ERR_ISACTIVE, 128

AL3_ERR_ISIDLE, 128

AL3_ERR_ISINACTIVE, 129

AL3_ERR_ISOPEN, 128

AL3_ERR_ISPRESENT, 129

AL3_ERR_ISREADY, 128

AL3_ERR_ISSTART, 128

AL3_ERR_MAXDEVICE, 129

AL3_ERR_MAXPROF, 129

AL3_ERR_MDB, 129

AL3_ERR_MODE, 129

AL3_ERR_NOTACTIVE, 129

AL3_ERR_NOTIDLE, 129

AL3_ERR_NOTINACTIVE, 129

AL3_ERR_NOTPRESENT, 129

AL3_ERR_NOTREADY, 129

AL3_ERR_NOTSTART, 129

AL3_ERR_OPEN, 128

AL3_ERR_QUEUE_INUSE, 129

AL3_ERR_RAMFAIL, 129

AL3_ERR_RANGE, 129

AL3_ERR_READ, 128

AL3_ERR_RESET, 128

AL3_ERR_RTOS, 128

AL3_ERR_SEM, 128

AL3_ERR_START, 128

AL3_ERR_STOP, 128

AL3_ERR_STOPED, 128

AL3_ERR_TIMEOUT, 129

AL3_ERR_TIMER, 128

AL3_ERR_UPDATE, 128

AL3_ERR_WRITE, 128

AL3_FAIL, 128

AL3_OK, 128

ERROR_CODES, 36
EXSBI, 69, 70
extBusParity, 43, 48
extClkMaster, 49
extClkMode, 49

F
FIFO

AAL1gator-32/-8/-4 Driver User’s Manual
Index

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 141

fifo, 55

fifoOvr, 54

fifoUdr, 54

lpbkFifo, 55

talpFifoFull, 54

FIFOfrmAdvFifoFull, 54
File Organization, 125
forcedUndr, 53
frameType, 47
fRedUndr, 54
Freeing Memory

sysAl3MemFree, 107

G
genSync, 47
Getting Buffers

sysAl3DPVBufferGet, 108

sysAl3ISVBufferGet, 109

Getting ISR Mask Registers

al3GetMask, 93

Giving Semaphores

sysAl3SemGive, 113

H
Hardware Interface, 21, 102
hiResClkSynth, 46
hwFail, 57

I
Idle

DetEnable, 41, 52

Pattern, 41, 52

Idle Detection Functions, 81
ingress, 135
Initialization Profile, 34, 35, 41, 43, 44,

45, 46, 63
Initializing Devices

al3Init, 26, 27, 45

insBusParity, 43, 48

insClkMaster, 49
insertCondCellData, 40, 51
insertDataMode, 40, 51
insSynchMode, 49
Installing Handlers

sysAl3ISRHandlerInstall, 103

Interrupt Service

Functions, 93

Vector, 59, 109

Interrupt Servicing, 17, 29
Interrupt-Service Routine Module, 23
Invoking DPR Routines

sysAl3DPRTask, 109

Invoking Handlers

sysAl3ISRHandler, 103, 104

ISR, 135
ISR Config

al3ISRConfig, 95

ISR Handler

sysAl3ISRHandler, 119

sysAl3ISRHandlerInstall, 119

sysAl3ISRHandlerRemove, 119

isrOK, 56

L
lgrpType, 44, 49
lineMode, 57
linkGrpCfg, 43, 49
Loopback Functions, 80
loopbk, 42, 47
lowCDV, 46
lpbkVci, 42, 47

M
maintnBitInteg, 39, 50
mapEnable, 43, 48
master, 54, 59
MAX_DEVICES, 36
MAX_DEVS, 45
MAX_DIRECT, 36
MAX_LGRPS, 37, 43, 49

AAL1gator-32/-8/-4 Driver User’s Manual
Index

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 142

MAX_LINES, 36
MAX_QUEUES, 37
MAX_SPES, 37, 43, 49
MAX_TRIBS, 37
maxBuf, 39, 50
maxDevs, 45, 56, 124
MaxDevs, 45
maxDIVs, 56
maxInitProfs, 45
maxInsert, 40, 51
MDB, 135
MDB_USER_SIZE, 37, 56
Memory

sysAl3MemCopy, 116

sysAl3MemFree, 116

mfAlign, 46
MIV, 135
modeISR, 46, 57
modState, 37
Module

Activation, 62

Data Block, 23, 26, 37, 55, 61

Initialization, 26, 44, 45, 61

Initialization Vector, 26, 44, 45, 61

modMSB, 56

modState, 56

Module Management, 27

moduleOK, 58

modValid, 56

semModule, 56

States, 26

Status Block, 23, 58

timerModule, 56

modValid, 37
MSB, 135
mvipMode, 44, 50

N
Naming Conventions, 122, 125
nClkDivEnable, 41, 47
nClkDivFactor, 41, 47
nClkDivFactor+2, 41, 47
noStartDrop, 40, 51
numA1SP, 57
numBytes, 107
numDevs, 56
numDIRECT, 57
numDIVs, 56
numLINE, 57
numQUE, 57

O
oam, 54
OAM Functions, 82
Opening Modules

al3ModuleOpen, 26, 44, 45, 61, 64

overrun, 53
ovr, 55

P
param, 60
parity, 54, 55
partialFillChar, 39, 50
patternMask, 41, 52
pClkParam, 71
pCRCPass, 83
pcurrDPV, 100, 101
pcurrISV, 96
pDDB, 56
pDirectParams, 93
pDIV, 56
pDPV, 110
pDPVBuffer, 96
pDSB, 97
pFirstByte, 107
pFunc, 111
PHY, 42
pISV, 109, 110
pMask, 93, 94
pmatrix, 124
pmaxDevs, 124
pMDB, 45
pMIV, 61
Polling, 31

AAL1gator-32/-8/-4 Driver User’s Manual
Index

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 143

Polling ISR Registers

al3Poll, 94

Porting Drivers, 115, 118
pParam, 70, 72, 73, 75
ppmatrix, 124
pprevBuf, 124
pProfile, 63
pRAMParams, 91
preemption, 114
Preemption

Disable

sysIma84PreemptDisable, 114

Enable

sysIma84PreemptEnable, 114

prevBuf, 124
Processing Flows, 27
Profile Management, 63
profileNum, 63, 64
pSBIParams, 92
pSBITribParams, 92
psem, 113
pSem, 113
pTimer, 111, 112
ptrMis, 55
ptrMismatch, 53
ptrParErr, 53
ptrParity, 54
ptrRcvd, 53
ptrRule, 54
ptrRuleErr, 53
ptrRx, 54
ptrSearch, 53
ptrSrch, 54
pUtopiaParams, 90

Q
qHandle, 72, 74, 76, 77, 78, 79, 80, 81,

85, 87, 88, 89

R
RAM

Callbacks

cbackRam, 100

Configuration, 20, 48

Interface Configuration, 35, 42, 91

Interface Configuration Functions, 91

Interface Configuration Table, 42

ram1, 53
ram2, 53
ramEndAddr, 57
Reading

Indirect Registers

al3ReadInd, 69

Registers

sysAl3ReadReg, 67

Real Time Operating System, 20
Receiving Buffers

sysAl3BufferReceive, 109

Receiving OAM Cells

al3RxOAMcell, 83

refValEnable, 46
Removing Handlers

sysAl3ISRHandlerRemove, 104

res, 55
Resetting Devices

al3Reset, 27, 65

resume, 53
Retrieving Statistical Counts

al3GetCounter, 96

al3GetStats, 97

Returning

Buffers

sysAl3DPVBufferRtn, 110

sysAl3ISVBufferRtn, 110

Cell Count

al3GetRCellCount, 87

Dropped Rx Cell Count

AAL1gator-32/-8/-4 Driver User’s Manual
Index

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 144

al3GetRDroppedCellCount, 88

Dropped Rx OAM Cell Count

al3GetRDroppedOAMCellCount,
86

Lost Cell Count

al3GetRLostCellCount, 89

Rx Cell Count With Incorrect SNP

al3GetRIncorrectSnp, 87

Rx Overrun Count

al3GetRecvOverrun, 88

Rx Pointer Parity Error Count

al3GetRPtrParErrorCount, 89

Rx Pointer Reframe Count

al3GetRPtrReframeCount, 88

Rx Underrun Count

al3GetRecvUnderrun, 88

Sticky Bits

al3GetStickyBits, 90

Suppressed Cell Count

al3GetTSupprCellCount, 85

Tx Cell Count

al3GetTCellCount, 85

TX OAM Cell Count

al3GetTOAMCellCount, 86

Returns

rxCASPattern, 41, 52

rxClkSrc, 47

rxCondData, 40, 51

rxCondMode, 40, 51

rxCondSig, 40, 51

rxMask, 41, 52

rxSigMode, 40, 51

rxVci, 50

rxVpi, 50

revision, 57
RTOS, 136
runtCell, 55
rxDroppedOAMCellCnt, 58
rxOAMCellCnt, 58
rxStatBitmask, 55
rxStatFifoFull, 54
rxStatFifoNotEmpty, 54
rxStatQueError, 55
rxStatResync, 55
rxStatUdrEnter, 55
rxStatUdrExit, 55

S
sAL3_CFG_CHAN_COND, 51
sAL3_CFG_CHAN_IDET, 52
sAL3_CFG_CHAN_SNP, 51
sAL3_DIV, 41, 43, 45, 46, 47, 48, 49, 50
sAL3_DPV, 60, 96, 100, 101
sAL3_ISV, 59, 109
SBI Bus Configuration, 20, 35

Functions, 92

Tables, 43

sDEV_HNDL, 65, 66, 83
Semaphore

sysAl3SemCreate, 118

sysAl3SemDelete, 118

sysAl3SemGive, 118

sysAl3SemTake, 118

Sending Buffers

sysAl3BufferSend, 109

Setting

Activate Timeslots

AAL1gator-32/-8/-4 Driver User’s Manual
Index

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 145

al3SetTimeslotActive, 81

Global Clock Configuration

al3GlobalClkConfig, 33, 71

Idle Timeslots

al3SetTimeslotIdle, 82

ISR Mask Registers

al3SetMask, 94

Line Modes

al3SetLineMode, 70

sigType, 46
snCellDrop, 53, 54
snkAnyPhyMode, 42, 48
snkBusWidth, 42, 48
snkCSMode, 42, 48
snkParity, 42, 48
snkSlaveAddr, 42, 48
snkUtopMode, 42, 48
snpAlgorithm, 39, 51
speEnable, 44, 49
speSync, 44, 49
speType, 44, 49
srcAnyPhyMode, 42, 47
srcBusWidth, 42, 47
srcCSMode, 42, 48
srcParity, 42, 48
srcSlaveAddr, 42, 48
srcUtopMode, 42, 48
SRTS Functions, 79
srtsRes, 54
SRTSResume, 53
srtsUndr, 55
SRTSUndrn, 53
Starting

Buffers

sysAl3BufferStart, 108

Modules

al3ModuleStart, 26, 45, 62, 104,
105

Starting Timers

sysAl3TimerStart, 111

Statistics Collection and Status
Monitoring, 17

Statistics Functions, 96
statUpdatePeriod, 57, 105
statUpdateTime, 57
Sticky Bit Error Word, 52
Stopping

Buffers

sysAl3BufferStop, 110

Modules

al3ModuleStop, 26, 62, 104, 106

suppressSignaling, 50
Suspending a Task

sysAl3TimerSleep, 112

sync, 54
syncMode, 44, 50
sysAl3BufferReceive, 117
sysAl3BufferSend, 117
sysAl3BufferStart, 116
sysAl3BufferStop, 117
sysAl3CbackA1SP, 119
sysAl3CbackRAM, 119
sysAl3CbackSBI, 119
sysAl3CbackUtopia, 119
sysAl3DPRTask, 118
sysAl3DPRTaskStart, 118
sysAl3DPRTaskStop, 118
sysAl3DPVBufferGet, 117
sysAl3DPVBufferRtn, 117
sysAl3ISVBufferGet, 117
sysAl3ISVBufferRtn, 117
sysAl3MemCopy, 116
sysAl3ReadReg, 119
sysAl3SafeReadReg, 119
sysAl3StatTask, 118
sysAl3StatTaskStart, 118
sysAl3StatTaskStop, 118
sysAl3WriteReg, 119

T
t1Mode, 46
Taking Semaphores

sysAl3SemTake, 113

AAL1gator-32/-8/-4 Driver User’s Manual
Index

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID: PMC-1991444, Issue 3 146

Testing

Address Bus Wiring

al3TestAddrBus, 99

Data Bus Wiring

al3TestDataBus, 98

Timer

sysAl3TimerAbort, 117

sysAl3TimerCreate, 117

sysAl3TimerDelete, 117

sysAl3TimerSleep, 117

sysAl3TimerStart, 117

TL_SYNC, 47
transErr, 55
transfer, 52
Transmit

txCASPattern, 41, 52

txClkSrc, 47

txClp, 39, 50

txCondData, 40, 51

txCondSig, 40, 51

txGfc, 39, 50

txHec, 39, 51

txMask, 41, 52

txOAMCount, 57

txPti, 39, 50

txSuppress, 39, 50

txVci, 50

txVpi, 50

Transmitting OAM Cells

al3TxOAMcell, 82

trib, 69, 70
txIdleFifoFull, 54
txIdleFifoNotEmpty, 54
txStatResync, 55

U
underrun, 53
undr, 55
usrCtxt, 57
UTOPIA Bus Configuration Functions,

90
UTOPIA/Any-PHY Bus Configuration, 33
UTOPIA/AnyPhy Configuration, 20, 47

V
Variable Type Definition, 121
Variables, 37
vpiModeOK, 56
vpiVciMapping, 47

W
Writing

to Devices

al3Write, 67

to Indirect Registers

al3WriteInd, 69

to Register Blocks

al3WriteBlock, 68

to Registers

sysAl3WriteReg, 67, 68

