
Surface Mount Gallium Arsenide FET for Oscillators

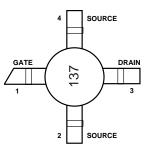
Technical Data

ATF-13786

Features

- Low Cost Surface Mount Plastic Package
- High f_{MAX}: 60 GHz Typical
- Low Phase Noise at 10 GHz: -110 dBc/Hz @ 100 kHz Typical
- Output Power at 10 GHz: up to 10 dBm
- Tape-and-Reel Packaging Option Available

Insertion Power Gain, Maximum Available Gain, and Maximum Stable Gain vs. Frequency. $V_{DS} = 3 V$, $I_{DS} = 40 mA$.


Description

Hewlett-Packard's ATF-13786 is a low cost Gallium Arsenide Schottky barrier-gate field effect transistor housed in a surface mount plastic package. This device is designed for use in low cost, surface mount oscillators operating over the RF and microwave frequency ranges. The ATF-13786 has sufficient gain for easy use as a negative R cell, without excess gain that can lead to unwanted oscillations and mode jumping. The gate structure used in the fabrication of this device results in phase noise performance superior to that of most other MESFETs. These features make this device particularly well suited for low $power(< +10 \, dBm)$ commercial oscillator applications such as are encountered in DBS, TVRO, and MMDS television receivers, or hand-held transceivers operating in the 900 MHz, 2.4 GHz, and 5.7 GHz ISM bands.

85 mil Plastic Surface Mount Package

PinConfiguration

This GaAs FET device has a nominal 0.3 micron gate length with a total gate periphery of 250 microns. Proven gold based metallization systems and nitride passivation assure a rugged, reliable device.

Symbol	ymbol Parameter		Absolute Maximum ^[1]	
V _{DS}	Drain-Source Voltage	V	4	
V _{GS}	Gate-Source Voltage	V	-4	
V_{GD}	Gate-Drain Voltage	V	-6	
I _{DS}	Drain Current	mA	I _{DSS}	
P _T	Power Dissipation ^[2,3]	mW	225	
T _{CH} Channel Temperature		°C	150	
T _{STG}	Storage Temperature	°C	-65 to +150	

ATF-13786 Absolute Maximum Ratings

Thermal Resistance^[2]: $\theta_{jc} = 325 \text{°C/W}$

Notes:

- 1. Operation of this device above any one of these conditions may cause permanent damage.
- 2. $T_{CASE} = 25^{\circ}C$ (T_{CASE} is defined to be the temperature at the ends of pins 2 and 4 where they contact the circuit board).

ATF	-13786 El	ectrical Specif	fications, T_{C} =	$= 25^{\circ}C, V_{DS} =$	$3 \text{ V}, \text{I}_{\text{DS}} = 40 \text{ mA}^{[4]}$

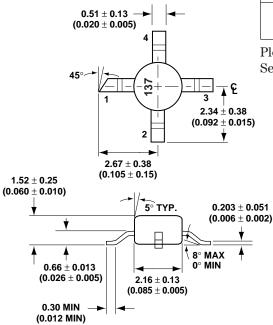
(unless noted)

Symbol	Parameters and Test C	Units	Min.	Тур.	Max.	
$ S_{21} ^2$	Insertion Power Gain	f = 10 GHz	dB		6.0	
P _{1 dB}	Power at 1 dB Gain Compression	f = 10 GHz	dBm	15	16.5	
G _{1 dB}	1 dB Compressed Gain	f = 10 GHz	dB	6.5	7.5	
PN	Phase Noise (100 kHz offset) ^[5]	f = 10 GHz	dBc/Hz		-110	
g _m	Transconductance	$V_{DS} = 3 V, V_{GS} = 0 V$	mS	25	55	
I _{DSS}	Saturated Drain Current	$V_{DS} = 3 V, V_{GS} = 0 V$	mA	50	70	100
V _P	Pinchoff Voltage	$V_{DS} = 3 V, I_{DS} = 1 mA$	V	-2.0	-1.5	-0.5
V _{BDG}	Gate - Drain Breakdown Voltage	$I_{DG} = 0.1 \text{ mA}$	V	6.5	7	

Notes:

4. Recommended maximum bias conditions for use as an oscillator.

5. The superior phase noise of this product results from the use of a gate structure optimized for noise performance.


Typical performance of 10 GHz parallel resonated, lightly coupled oscillator using high Q dielectric resonator.

^{3.} Derate at 3.1 mW/°C for $T_{\rm C} > 60$ °C.

Frequency	S ₁₁		\mathbf{S}_{21}		S ₁₂		S ₂₂	
GHz	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
1	0.97	-23	4.80	157	0.03	77	0.46	-13
2	0.88	-46	4.60	135	0.06	66	0.42	-25
3	0.78	-68	4.35	117	0.08	58	0.36	-35
4	0.67	-95	4.02	95	0.11	47	0.28	-48
5	0.57	-125	3.61	75	0.12	37	0.19	-65
6	0.52	-157	3.20	57	0.13	28	0.12	-93
7	0.53	176	2.84	41	0.14	21	0.08	-147
8	0.57	160	2.54	31	0.14	18	0.10	171
9	0.60	143	2.27	16	0.14	12	0.15	148
10	0.63	130	2.04	4	0.15	6	0.19	134
11	0.64	117	1.82	-9	0.14	0	0.25	122
12	0.67	107	1.65	-19	0.14	-4	0.30	113
13	0.72	99	1.55	-29	0.14	-8	0.35	109
14	0.76	97	1.47	-35	0.14	-9	0.39	111
15	0.78	90	1.40	-46	0.14	-14	0.41	108
16	0.77	83	1.32	-58	0.14	-20	0.42	104
17	0.74	77	1.26	-68	0.14	-28	0.43	98
18	0.73	69	1.23	-80	0.14	-36	0.42	93

Typical Scattering Parameters, Common Source, $Z_0 = 50\Omega$, $V_{DS} = 3 V$, $I_{DS} = 40 mA$

85 mil Plastic Surface Mount Package Dimensions

Part Number Ordering Information

Part Number	Devices per Reel	Reel Size
ATF-13786-TR1	1000	7"
ATF-13786-STR	10	strip

Please refer to the "Tape-and-Reel Packaging for Surface Mount Semiconductors" data sheet for more detailed information.

DIMENSIONS ARE IN MILLIMETERS (INCHES)